Explore jobs
Find specific jobs
Explore careers
Explore professions
Best companies
Explore companies
Application engineer job growth summary. After extensive research, interviews, and analysis, Zippia's data science team found that:
The projected application engineer job growth rate is 6% from 2018-2028.
About 3,400 new jobs for application engineers are projected over the next decade.
Application engineer salaries have increased 9% for application engineers in the last 5 years.
There are over 53,765 application engineers currently employed in the United States.
There are 111,338 active application engineer job openings in the US.
The average application engineer salary is $92,921.
| Year | # of jobs | % of population |
|---|---|---|
| 2021 | 53,765 | 0.02% |
| 2020 | 57,032 | 0.02% |
| 2019 | 58,750 | 0.02% |
| 2018 | 58,840 | 0.02% |
| 2017 | 58,532 | 0.02% |
| Year | Avg. salary | Hourly rate | % Change |
|---|---|---|---|
| 2025 | $92,921 | $44.67 | +4.7% |
| 2024 | $88,712 | $42.65 | +2.4% |
| 2023 | $86,595 | $41.63 | +2.7% |
| 2022 | $84,289 | $40.52 | --1.3% |
| 2021 | $85,382 | $41.05 | +2.4% |
| Rank | State | Population | # of jobs | Employment/ 1000ppl |
|---|---|---|---|---|
| 1 | District of Columbia | 693,972 | 668 | 96% |
| 2 | Virginia | 8,470,020 | 2,473 | 29% |
| 3 | Colorado | 5,607,154 | 1,525 | 27% |
| 4 | Massachusetts | 6,859,819 | 1,773 | 26% |
| 5 | Oregon | 4,142,776 | 1,069 | 26% |
| 6 | California | 39,536,653 | 9,452 | 24% |
| 7 | Washington | 7,405,743 | 1,763 | 24% |
| 8 | Delaware | 961,939 | 232 | 24% |
| 9 | Vermont | 623,657 | 140 | 22% |
| 10 | Maryland | 6,052,177 | 1,248 | 21% |
| 11 | Utah | 3,101,833 | 653 | 21% |
| 12 | New Hampshire | 1,342,795 | 282 | 21% |
| 13 | Rhode Island | 1,059,639 | 213 | 20% |
| 14 | Minnesota | 5,576,606 | 931 | 17% |
| 15 | Arizona | 7,016,270 | 1,149 | 16% |
| 16 | Wyoming | 579,315 | 90 | 16% |
| 17 | Connecticut | 3,588,184 | 539 | 15% |
| 18 | Montana | 1,050,493 | 153 | 15% |
| 19 | Georgia | 10,429,379 | 1,482 | 14% |
| 20 | North Dakota | 755,393 | 102 | 14% |
| Rank | City | # of jobs | Employment/ 1000ppl | Avg. salary |
|---|---|---|---|---|
| 1 | Annapolis | 14 | 36% | $100,326 |
| 2 | Santa Clara | 24 | 19% | $123,545 |
| 3 | Columbia | 15 | 15% | $100,133 |
| 4 | Des Moines | 12 | 6% | $83,841 |
| 5 | San Jose | 48 | 5% | $123,447 |
| 6 | Atlanta | 23 | 5% | $86,194 |
| 7 | Baton Rouge | 12 | 5% | $72,672 |
| 8 | Sacramento | 20 | 4% | $121,565 |
| 9 | Washington | 20 | 3% | $108,515 |
| 10 | Boston | 19 | 3% | $83,950 |
| 11 | Phoenix | 31 | 2% | $95,626 |
| 12 | San Diego | 24 | 2% | $108,422 |
| 13 | Austin | 21 | 2% | $93,594 |
| 14 | Indianapolis | 14 | 2% | $65,746 |
| 15 | Houston | 28 | 1% | $93,035 |
| 16 | Dallas | 17 | 1% | $90,808 |
| 17 | Chicago | 16 | 1% | $83,774 |
San Jose State University
Seattle University
University of Minnesota - Duluth
New Jersey Institute of Technology
Weber State University
Southern Illinois University Edwardsville
Bellingham Technical College
Duke University
Oklahoma State University Institute of Technology - Okmulgee
University of San Diego
University of Wisconsin - Platteville
University of South Alabama
Tzuyang Yu Ph.D.: A few tips to share with junior engineers are listed below. Be eager to learn from peers and other senior engineers, be open-minded to make friends, be adaptive to different cultures in the work environment, be professional (e.g., be punctual at deadlines, be mindful in appearance), be empathetic (focus on people, not mobile devices).
Kambiz Farahmand Ph.D., P.E.: All engineering and technical skills will be in need. People who are capable to use technology will be in high demand. Project management skills. Ability to use various software and be able to do some coding. Understanding of AI and how it applies to the specific work that you do.
Julie Brandis: Oregon State University provides support in salary negotiation, also students can work with mentors who are familiar with company hiring practices and wage structures. If you have internship experience, that can help to boost your starting salary.
Julie Brandis: Engineering is a highly transferable degree – so take the time to visit with many employers. At Oregon State University we provide those opportunities beyond traditional career fairs. Companies are seeking students who do well in the classroom as well as students who engage in other activities and clubs – that can be sports, a student club or community organization.
Davide Masato: The high demand for plastics engineers facilitates maximizing starting salaries. Graduates with co-op experience enjoy a competitive edge. To grow both as engineers and team members, young professionals should actively seek professional development opportunities. Continuous learning and seeking advancement within the organization or externally are key. Pursuing advanced degrees or certifications, even remotely, enhances qualifications and marketability.
Christopher Misorski FASM: Maximizing salary potential at the start of your career is not a clear pathway generally. One way that you can be considered more valuable, and hence worth a better salary, is to have participated in a co-op or internship program with a company in your field. This experience gives employers some confidence that you were able to carry out assignments and thrive in a workplace environment. The employer that you worked for may be inclined to offer you a position upon graduation and you are now worth more because you have already proven to them your abilities. Even if they don’t offer you a job (no appropriate open position may be available) your ability to discuss your experiences with the HR recruiter or hiring manager at another company can instill confidence in your selection as a hire. Just remember, if you tell them you did a project, be prepared to explain it so it doesn’t appear you were just in the background of this project, just going along for the ride.
San Jose State University
Mechanical Engineering
Professor Winncy Du: Keep Engineering Ethics in mind -- protect the public and the engineers themselves. Make sure that they know and understand the core concepts of their field. No matter what they design, they need to follow the industrial standards or grades, and safety measurements closely. Check, check, and double check, especially when they design biomedical devices, mobile robots, autonomous vehicles or drones, and automated material handling systems. I saw increasing engineers' designs or products challenged by the prospect of being deposed in the courtroom.
Professor Winncy Du: Mechatronics and system engineering. Almost everything around us is a mechatronics system (*mech*anicia+elec*tronics*+programming): iphones (vibrates and displays, senses); refrigerators, cars, etc. Mechatronics is an *integrated *system, thus a system engineer is very important -- ensure all the subsystems interact properly and work together as a whole system efficiently. Be emotional intelligence (EQ) -- one of today's most in-demand human power skills. Not only be an engineer, but be a leader. Leaders who excel at EQ will be the most sought after by, and indispensable to, organizations, industry, and academia.
Professor Winncy Du: Be a 'star' engineer and establish track records at work. Earn new skills. Many companies offer continuous education programs through training, certificate programs, and joint degrees with universities. You can maximize your salary through joining these programs while you are working. Become a leader, such as a project manager or supervisor can boost your salary. Get recognitions, such as becoming a fellow of American Society of Mechanical Engineers, filing patterns, having publications, receiving engineer awards. Have great communication skills and get along with people well.
Thomas Congedo PhD: Of course there will always be new software tool developments. But far more important will be developing comprehension of and analytic ability in new reactor and system types - for example, non water-cooled power systems. Again, this is driven by your healthy curiosity.
Thomas Congedo PhD: That comes from your ability to focus on technical product of the highest quality, always seeking to truly understand the customer’s needs. For example, often a customer will phrase a problem by stating the solution he or she assumes. Taking the time to respectfully draw out the thinking further can make you the customer’s hero, and this makes you the person likely to be selected for the challenging and most rewarded assignments.
Thomas Congedo PhD: Your best friend will be a curious frame of mind, accompanied by a diligent approach to learning new scientific elements and methods, often taught to you by your senior colleagues.
Seattle University
Civil Engineering
Jhon Smith: Do not be afraid to ask questions to your supervisors (although do not take it to an extreme and become demanding—show initiative). You get the fundamentals of engineering at school and you are equipped to use them but it takes a few years to feel comfortable. Engineering is a profession of practice and it is only through practice that you best learn it.
Jhon Smith: Expand your network, join professional organizations and committees, become valuable in whatever company you work for, never stop learning, seek for opportunities for professional work, get your PE license. After these you will become more valuable naturally and could comfortably ask for a promotion or a salary increase because you’d know you deserve it.
Jhon Smith: Professional skills such as being able to communicate clearly, being flexible, open-minded, eager to take on challenges, adept and working with others and taking ownership of the projects tasks given to you. Staying grounded to the fundamental concepts you learn in school so every time you run a sophisticated piece of software to do design you must be able to use those fundamentals to check the results.
Jiayue Shen: To maximize your salary potential when starting your career in Mechanical Engineering Technology, contemplate acquiring certifications like the FE or PE license, or additional training in high-demand specialized areas such as semiconductors. Moreover, gaining practical experience through academic clubs, undergraduate research, internships, or co-op programs can increase your appeal to employers, potentially resulting in higher salary offers.
Jiayue Shen: It's essential to stay curious and eager to learn, as the field is continually evolving. Keeping abreast of the latest technologies and trends through seeking out learning opportunities and maintaining a curiosity about new developments is crucial. Additionally, building a robust professional network and seeking mentorship can offer valuable insights and guidance. Embracing interdisciplinary projects is also key, as the field is expanding beyond purely mechanical aspects. Being dynamic and proactive in interacting with individuals from diverse backgrounds will be beneficial, as collaboration across disciplines is increasingly important in this field.
Jiayue Shen: In the next 3-5 years, skills such as electronic control, basic programming, and critical thinking will become increasingly important in the field of Mechanical Engineering Technology. As industries like robotics, automation, and semiconductors continue to grow, professionals will need to be well-versed in these areas to stay competitive. Additionally, skills such as collaboration and effective oral and written communication will be crucial for advancing in one's career.
Richard Davis: Likes: Engineers often enjoy working on cutting-edge technologies and solving challenging problems. For example, a biomedical engineer might find satisfaction in developing a new prosthetic limb that improves a patient's quality of life. The sense of accomplishment from seeing their designs come to life or their solutions implemented successfully can be gratifying. Engineers typically enjoy working in collaborative teams, where they can bounce ideas off colleagues. Engineering offers the chance to make a tangible difference in the world, whether it is through developing life-saving medical devices, improving infrastructure, or creating sustainable energy solutions. Dislikes: Like any profession, engineering has its share of challenges. It can sometimes involve long hours, especially when deadlines are approaching or projects hit unexpected roadblocks. Dealing with technical challenges and troubleshooting can be frustrating and mentally taxing, mainly when solutions are elusive. Depending on the industry and specific role, engineers may encounter bureaucracy or red tape that slows down project progress. Engineers may also face ethical dilemmas, such as balancing cost-effectiveness with safety or environmental concerns, which can be challenging to navigate.
Richard Davis: Engineers engage in various daily activities that are intellectually stimulating and rewarding. Every task is a step toward a tangible accomplishment, from innovating, designing, testing, and implementing new technologies to troubleshooting and optimizing existing systems to reduce costs, increase productivity, and improve quality. They may spend time in meetings discussing project progress, collaborating with colleagues, and planning future steps, all of which contribute to the sense of achievement. Engineers often use software tools to create designs, analyze data, and simulate systems, further enhancing their productivity and satisfaction. Depending on the field, they might spend time in labs conducting experiments, on-site overseeing construction or manufacturing processes, or in offices working on plans and reports, all of which are opportunities to see their work come to fruition. Entry-level Engineers: A bachelor's degree in engineering trains engineers with strong analytical and problem-solving skills. Entry-level engineers might start with tasks like data collection and analysis or assisting senior engineers with projects. Entry-level engineers might also spend time shadowing more experienced colleagues, attending training sessions, and gradually taking on more responsibility and management as they gain experience.
Richard Davis: Engineering offers career opportunities across various industries, from technology and healthcare to infrastructure and environmental sustainability. With technological advancements and the increasing complexity of global challenges, such as climate change, food and clean water, and urbanization, engineers are in high demand to develop innovative solutions. For example, environmental engineers are crucial in developing sustainable solutions to reduce pollution and conserve resources. Engineering provides opportunities for creativity and problem-solving, making it a rewarding career choice for those who enjoy tackling complex problems. The global focus on sustainability and renewable energy presents exciting prospects for engineers to contribute to meaningful projects that positively impact society and the environment.
Mishah Salman Ph.D.: An underappreciated skill that I think will become more sought-after is the ability to validate computer-made decisions and their shortcomings. With the growing prominence of AI use in design, problem solving, and decision making, the engineering field will need experts to error-check decisions made using these technologies. Sometimes there are unexplored gaps that these technologies overlook, and sometimes there are biases or inappropriate assumptions baked into AI-based results. Humans are inherently imaginative and creative. We excel at picking up on things that computer algorithms may miss. Talented experts that recognize and address these issues will remain invaluable in the workforce. Another indispensable skill that is often overlooked in engineering is effective interpersonal communication. Whether in a teamwork context, a leadership role, or a client interaction, competent communication is crucial. This can take the form of conversation, live presentations, written correspondence, and beyond. People that hone their communication skills are often recognized, and tend to be the individuals that are promoted to more senior roles.
Mishah Salman Ph.D.: To maximize salary potential, I recommend growing your professional network and being flexible within your career. Attending professional gatherings and rubbing shoulders goes a very long way. It’s amazing how you can casually bump into some well-respected team leader that’s trying to fill an opening or glean information about a new project that needs fresh talent. Network with people in diverse fields and roles. You never know who knows who. Making a positive impression and having someone recognize your name down the line can go a very long way!
Mishah Salman Ph.D.: My advice to recent graduates is to be open to non-conventional roles. Taking on responsibilities beyond one’s official discipline provides broader value to employers. Many students that graduate with degrees in mechanical engineering (or similar disciplines) find great success by stepping outside of their expected job title. Sometimes exploring roles with titles like “analyst” or “manager” or “designer” can provide interesting opportunities to apply one’s engineering skillset in an alternate context. The real strength of your degree is the transferable skillset that you developed along your educational journey. Keep your options open!
Mansooreh Mollaghasemi Ph.D.: Build skills in high demand areas such as data analytics, supply chain management, and automation. Certification such as Project Management Professional (PMP) can make a candidate more attractive and justify a higher starting salary. Internships can also provide valuable industry experience and can often lead to higher starting salaries.
Mansooreh Mollaghasemi Ph.D.: Concurrent with building technical skills, they must build soft skills such as communication, teamwork, problem-solving, and leadership. These skills are often the differentiators between good and great engineers.
Mansooreh Mollaghasemi Ph.D.: Continue learning! The field of engineering is continuously evolving with new technologies and methodologies. Pursue ongoing education through workshops or certifications to stay current with industry trends and advancements. After gaining some practical experience, consider applying for a master's degree to further technical knowledge and skills.
Megumi Usui: Many individuals aspire to earn a substantial salary right from the beginning of their careers. However, this is not typically how the professional world operates. it is essential to demonstrate to your employer that you are a skilled, valuable, and irreplaceable asset. This process takes time and dedication. Avoid pressuring your employer for immediate rewards based solely on self-perception. While family may view you as exceptional, in the professional realm, you must distinguish yourself through your actions. Prove your worth by consistently arriving on time, working diligently, completing tasks swiftly and accurately, and exceeding expectations. Take a proactive approach to your projects and strive to impress your employer in every conceivable way. Continuously acquiring new skills that are valuable to the company is crucial. Additionally, building a strong network within your field by making professional connections and fostering friendships can significantly enhance your career prospects. By embodying these qualities, you can effectively demonstrate your value and potentially achieve the financial and professional rewards you seek.
Megumi Usui: Given the rapid advancement in AI technology, its potential integration into the drafting and design field remains uncertain in terms of timing and methodology. However, if and when AI becomes a significant component of this industry, it will be crucial to find ways to collaborate effectively with AI systems to leverage their capabilities for the betterment of society. As technology continues to advance at an unprecedented pace, this collaborative approach will be essential. In this evolving landscape, proficiency in CAD skills remains indispensable. It is important to emphasize that CAD expertise extends beyond mere modeling; professionals must also ensure that their designs are sustainable and adhere to the latest industry standards. This holistic approach is critical for addressing contemporary challenges and aligning with global sustainability goals. Moreover, the significance of complementary skills such as effective communication and time management cannot be overstated. These competencies are vital for the successful execution of projects and fostering productive collaboration within multidisciplinary teams. By integrating technical proficiency with these essential soft skills, professionals can excel in an increasingly dynamic and competitive environment, positioning themselves to adapt to future technological advancement.
Megumi Usui: Even after obtaining a degree, it is crucial to recognize that continuous learning is a fundamental aspect of professional development in the workplace. One must cultivate an open-minded attitude and demonstrate a willingness to acquire new knowledge and skills at any time and in any context. Effective communication with colleagues and clients is essential for successful collaboration and project execution. It is important to understand that the professional environment is significantly different from the academic setting. In a company, the focus is delivering work that meets the expectations and standards set by the employer and satisfies the needs of clients, rather than merely fulfilling personal criteria. Furthermore, it is imperative to produce high-quality work consistently. Mediocre performance is unacceptable, and organizations will not hesitate to seek replacements if the work delivered does not meet their standards. Ensuring that your work is thorough, precise, and aligns with the company's objectives is critical for maintaining the position and advancing their career.
Michael Denn: 1. Become the expert in whatever you do. 2. Understand how your work fits into the bigger picture and keep that in mind when you do your work. 3. Keep learning! Your engineering degree is not the end of your education! 4. Take stretch assignments and opportunities whenever you can.
Michael Denn: 1. The time needed to progress from an idea to a quality prototype is continually decreasing. That trend will likely continue. Skills that support short development times, such as computer modeling, simulations and rapid prototyping, will continue to be valued. 2. One skill that will always be valuable is the ability to acquire new knowledge and apply it to the task at hand.
Michael Denn: The answers to this question are largely the same as the answer to question 1. However, here are some additional points: 1. Excel in your job. Become the person everyone goes to for whatever type of work you do. 2. Develop and maintain a career plan. Make sure your assignments and tasks align with your plan. When you have the opportunity to change positions, keep you plan in mind.
Bellingham Technical College
Precision Metal Working
Kyle Miller: The advice I feel the most compelled to offer, based on personal experience, is to embrace the first few years in the field as a nebulous growth period. There is often a rush for graduates to 'realize their identity' in the field, at the risk of narrowing their potential in the trades. The first year or two is a great time to shake every hand and make every acquaintance possible. A lot of those interactions can help guide a trades-person along a pathway they didn't realize was possible upon their first steps into the working world.
Kyle Miller: The world of CAD models, Automation, and A.I. assisted tools are outrunning a lot of peoples current understanding of the field. I think that it will be important in the coming years to become familiar with these concepts and how they can assist in fabrication/installation/inspection. I don’t think every trades-person needs to be proficient in every emerging tech, but understanding how these tools can benefit our current practices will make their inevitable implementation all the smoother.
Dr. Jimmie Lenz D.B.A.: A primary reason is the value placed on the quantitative nature of an engineering degree and the fact that this is primarily applied learning and skills, as opposed to the theoretical nature of some other areas of quantitative study. Being able to start working as soon as they start is very attractive to employers, as well as the broad knowledge of software, artificial intelligence, and data science that most engineers leave school with.
Dr. Jimmie Lenz D.B.A.: Engineering encompasses so many areas of modern life that it’s impossible to provide a comprehensive answer here. The training that engineers receive, both the technical and the applied nature, make these individuals quite attractive to all types of industries. Perhaps the most surprising to many people are the significant number of engineers employed in financial services.
Dr. Jimmie Lenz D.B.A.: I believe it’s the old notion of what an engineer is, and being pigeonholed. This notion, even among legacy institutions, is fading quite quickly as engineers move into all types of businesses and roles.
Oklahoma State University Institute of Technology - Okmulgee
Electromechanical Technologies/Technicians
Jim Gordon: Computer skills will only increase in importance and drone technology will be huge. Fluency in the software your firm uses will be a must-have skill.
University of San Diego
Mechanical Engineering
Dr. Imane Khalil: It's important not to limit yourself in terms of the type of work or the product you want to be involved in creating at the start of your career. Any engineering job is fine to start your career. You may not yet have the experience to know your preferences. Instead, seek out opportunities for rotational positions that expose you to different stages of product creation, from design to analysis, development, testing, and manufacturing. All products go through the same cycle (design, analysis, development, testing, and at the end manufacturing). Explore and see what you enjoy doing.
Prof. Harold Evensen: Engineering Physics graduates have had a wide range of experiences as working engineers. Engineers use technology to solve problems for society, and they play a lot of roles in this process. Their day-to-day job can involve a mix of technical skills and knowledge, interpersonal skills, and communication. Tasks include such things as designing electrical and/or mechanical systems; conducting tests and experiments to improve products or manufacturing processes; working with clients and customers to identify their needs and determine the best way to meet them; writing reports, summaries, and project proposals; and managing cross-disciplinary teams.
University of South Alabama
Electrical, Electronics, And Communications Engineering
Edmund Spencer: Look for jobs that have the highest technical content, and try to develop entrepreneurial skills early.