Explore jobs
Find specific jobs
Explore careers
Explore professions
Best companies
Explore companies
Electrical supervisor job growth summary. After extensive research, interviews, and analysis, Zippia's data science team found that:
The projected electrical supervisor job growth rate is 0% from 2018-2028.
About -400 new jobs for electrical supervisors are projected over the next decade.
Electrical supervisor salaries have increased 11% for electrical supervisors in the last 5 years.
There are over 47,244 electrical supervisors currently employed in the United States.
There are 33,839 active electrical supervisor job openings in the US.
The average electrical supervisor salary is $90,972.
| Year | # of jobs | % of population |
|---|---|---|
| 2021 | 47,244 | 0.01% |
| 2020 | 44,731 | 0.01% |
| 2019 | 46,019 | 0.01% |
| 2018 | 44,166 | 0.01% |
| 2017 | 41,934 | 0.01% |
| Year | Avg. salary | Hourly rate | % Change |
|---|---|---|---|
| 2025 | $90,972 | $43.74 | +4.1% |
| 2024 | $87,371 | $42.01 | +2.0% |
| 2023 | $85,662 | $41.18 | +2.1% |
| 2022 | $83,900 | $40.34 | +2.0% |
| 2021 | $82,294 | $39.56 | +0.8% |
| Rank | State | Population | # of jobs | Employment/ 1000ppl |
|---|---|---|---|---|
| 1 | District of Columbia | 693,972 | 60 | 9% |
| 2 | Massachusetts | 6,859,819 | 543 | 8% |
| 3 | Virginia | 8,470,020 | 551 | 7% |
| 4 | Iowa | 3,145,711 | 219 | 7% |
| 5 | Utah | 3,101,833 | 209 | 7% |
| 6 | Arizona | 7,016,270 | 388 | 6% |
| 7 | Colorado | 5,607,154 | 351 | 6% |
| 8 | Minnesota | 5,576,606 | 322 | 6% |
| 9 | New Hampshire | 1,342,795 | 75 | 6% |
| 10 | Georgia | 10,429,379 | 540 | 5% |
| 11 | Michigan | 9,962,311 | 457 | 5% |
| 12 | Maryland | 6,052,177 | 330 | 5% |
| 13 | Wisconsin | 5,795,483 | 312 | 5% |
| 14 | Alabama | 4,874,747 | 227 | 5% |
| 15 | Kansas | 2,913,123 | 140 | 5% |
| 16 | New Mexico | 2,088,070 | 100 | 5% |
| 17 | Wyoming | 579,315 | 28 | 5% |
| 18 | California | 39,536,653 | 1,549 | 4% |
| 19 | Washington | 7,405,743 | 330 | 4% |
| 20 | Nevada | 2,998,039 | 110 | 4% |
| Rank | City | # of jobs | Employment/ 1000ppl | Avg. salary |
|---|---|---|---|---|
| 1 | Cupertino | 1 | 2% | $112,388 |
| 2 | Salina | 1 | 2% | $78,884 |
| 3 | New Bedford | 1 | 1% | $85,267 |
| 4 | Sunnyvale | 1 | 1% | $112,363 |
Gonzaga University
Stevens Institute of Technology
California State University - Fresno
University of Alabama at Birmingham
San Diego State University
University of Utah

Old Dominion University

University of Central Florida
Michigan Technological University

IAEI
University of Mississippi

University of Louisville

University of California, Davis

University of Arkansas, Fayetteville

Wright State University
Steven Schennum Ph.D. P.E.: Make sure electrical engineering is something that YOU want to do and not something you are doing for someone else (a friend, a relative, etc.). I’ve had students who were pursuing an EE degree just to make their parents (or uncle, or whomever) proud, and weren’t really interested in what they are studying. If you do not have the passion to be an engineer, then do something else. In addition to passion, engineering requires a lot of math, reason, and logic. If you are easily frustrated, struggle with mathematics, and are inclined to give up, then don’t waste your time. Find a more suitable way to live your life. If you live your life by disregarding your own interests while trying to gain the approval of someone else, you will wind up being miserable.
Steven Schennum Ph.D. P.E.: The most important skill is the ability to learn new things, and especially to unlearn things you “know” after evidence demonstrates that these things are not true. Learn how to analyze information. Your intuition, simulations, and results should all be in alignment. If they are not, then dig deeper. Learn the terminology and jargon specific to your company and your projects. Spend time reading. Don’t be afraid to ask questions. Don’t be intimidated by new software.
Min Song: Communication skills and innovative thinking skills. As emerging technologies continue to be complex and multidisciplinary, it’s important to be able to communicate with professionals in diverse disciplines. Taking robotics, for example, the electrical engineer must be able to work with mechanical and biomechanical engineers, computer engineers, software engineers, artificial intelligence experts, cognitive scientists, system engineers, etc. A person will be able to generate innovative ideas only if the person has a complete and comprehensive understanding of the entire system and can work well with other individuals with a range of expertise.
Hovannes Kulhandjian Ph.D.: Stay Curious and Keep Learning: The field of electrical engineering is constantly evolving. Stay up to date with the latest advancements and technologies through continuous learning and professional development. Build a Strong Foundation: Focus on mastering the core principles of electrical engineering to provide a strong foundation for your career. Network: Build professional relationships with peers, mentors, and industry experts. Attend conferences and seminars to expand your network and learn from others. Gain Practical Experience: Look for internships, co-op positions, or entry-level jobs that provide hands-on experience. This practical exposure will help you apply your knowledge and stand out in the job market. Develop Soft Skills: Communication, teamwork, and problem-solving skills are crucial in any engineering role. Cultivate these skills to work effectively with others and advance your career.
Arie Nakhmani: Electrical Engineering has always (from its inception) been a good profession to enter, but now it is better than ever. Now everything is becoming Electrical Engineering, and the world cannot survive without it even for a few days. Electrical Engineering is the most necessary profession for the survival of modern society.
Arie Nakhmani: People who have EE degrees like being able to choose from a variety of EE sub-fields and being able to enter new areas because they learn science fundamentals and math, critical thinking, and the ability to solve difficult problems that are very helpful in life regardless of the job they pick. People dislike that solving difficult problems is difficult and requires a lot of effort. Not all are ready to put their effort in.
Dr. Arif Engin: Electrical engineering graduates are sought by a wide range of employers in government and industry for many different types of work. The top occupations in electrical engineering fields are projected to grow and sometimes require an advanced degree.
University of Utah
Electrical and Computer Engineering Department
Florian Solzbacher: Examples of having applied the knowledge gained in their studies to practical examples of solving engineering problems that require the combination of skills and at least some understanding of system engineering aspects are important signals that graduating engineers are ready to be productive in a real-world setting are always important. Obviously, participating in projects that address current "hot topic" problems, e.g., in robotics, AI/machine learning, power systems, biomedical applications, or that resonate with specific problems an employer is currently working on, will raise a student's profile.
Supplemental skills, such as Entrepreneurial or business training, can enhance and differentiate a student's resume. This shows that an engineer is not solely focused on the core technical engineering skills but does have an understanding of the driving forces and their interaction in a real-world business setting, that are not only part of the design requirements for a product (e.g., design to cost), but also often drive the selection of technical solution paths, after all, every development and product has to make business sense. Imagine two young engineers proposing a solution to their manager for a new product: one maybe even over-exceeds the technical requirements, but the development and/or manufacturing and servicing effort and cost is significantly higher than a colleagues solution that may only just about reach the requirements, or maybe even compromise on some specifications, but that is far cheaper to develop, make and service and that may allow entering a far larger market- chances are very high that the business may decide to go for the "inferior" solution from a technical point of view, that is, however, the better product. This supplemental skill set is a significant competitive advantage to have as an engineer.
Florian Solzbacher: Engineering is about teamwork. All major quantum leaps and most products require extensive system engineering and diverse skills. Engineers need to be able to understand the languages and workflows not only across engineering disciplines but also ranging into business, legal and ethical aspects of their work. This includes communication and project management skills.

Michel Audette Ph.D.: My take on this is what I've seen with my wife's work in industry, which suggests that the industrial landscape is going to be increasingly equipped for, and open to, remote work. I think that the implication for graduates is that they may need to be flexible about working within a geographically distributed team. If company deciders feel that someone is worth employing because of a unique skill set, then they would typically be more willing to hire that person even if unable to make it to work regularly, if that is feasible given the nature of the work; some work, such as hardware testing or industrial production, may not lend itself to remote contributions.
Nonetheless, for those areas that accommodate geographically distributed activity, such as software development, graduates can expect to interact with team members all over the US, possibly all over the world, if someone is deemed unique enough to hire despite living abroad. This places a high premium on the ability and willingness to work in a heterogeneous team, where not only will members look different, but also have myriad accents in their English, which will also impose a certain adaptability and tolerance to team members.
A related impact could also be that global hiring will make it easier for multi-national companies to hire a portion of their talent in countries where wages are lower and motivate US-based engineers to seek out graduate degrees in order to increase their competitiveness and employability at US salaries.
Michel Audette Ph.D.: One skill that is timeless is the ability to communicate effectively, such as taking a complex design process and distilling it into intuitive slides or reports that lend themselves for senior managers to process in order to come to a decision. An engineer who has that ability will always have some tools in his/her toolbox that makes that individual attractive to a company and to the local technical ecosystem, thus a ripe target for headhunters who willing to champion them to companies looking for top talent. Moreover, speaking and writing well also comes with a vital component of diplomacy, especially in the context of increasingly distributed company workforce: the ability not just to get on with colleagues from different parts of the world, increasingly heterogeneous in terms of gender and possibly sexual preference, but embrace them for who they are. This is often maps to opportunities to travel, as some collaborations lead to meetings face to face, post-covid.
This embrace of heterogeneity is even more relevant in that technical problems being solved are increasingly multi-disciplinary, so that an engineer may need to interact with biologists, physicians, clothing or furniture designers, mathematicians, lawyers, and so on: in my own case, I have to wear a multitude of different hats, while recognizing someone who is a perfect fit for one of those hats when I meet that individual, and making the most of that opportunity to build a truly competent team. Engineers must be able to hold a meaningful, respectful conversation with any of these counterparts, not just discuss code or circuit design. I would advocate that they spend time reading, to maintain their vocabulary and stay abreast of the world around them.
Another one that I advocate is the ability to tap into a revolution that has occurred in parallel with the advent of Internet and cellular technologies, these past 30+ years: the explosion of open-source software tools. I am a committed proponent of open source, as a former contributor to them while previously employed at Kitware (a pioneer in this area, behind VTK, ITK, CMake, and myriad others). I see job ads in Indeed.com that specifically ask for the ability to work with these tools, since they save work and make it possible to produce a prototype in much less time than developing it completely in-house. This ability does not just presuppose the ability to program at a competent level, but other abilities: the ability to track bugs that not be in the calling program, but in the open-source software library itself, the willingness to get answers in the community of developers, the eye for details that extends to graphical processor units that result in accelerations an order of magnitude or better, and so on. These go way beyond writing a self-contained algorithm. Hardware designers may also have similar tools, based on broad standards, Arduino, and the prevalence of 3D printers that make it possible to physically replicate digital models.
Finally, a vital skill is the willingness and ability to keep learning, while embracing revolutions that take place at breathtaking pace. The latest one is the reliance on deep neural networks (DNNs) to synthesize algorithms that can learn and adapt to their data, with much faster performances than feasible with the previous algorithms that DNNs have replaced. The point to make here is not to embrace neural networks in a proximal sense, but that we cannot anticipate what will come next, downstream of DNNs. Graduates of 2021 have to be willing to keep their curiosity and work ethic enough to be responsive to the next wave of technologies, and embrace them for the opportunities that they represent.

University of Central Florida
Department of ECE
Maria Jacob: Well, this is a too general question to answer. It totally depends on which job you are applying. Is the graduate going to the industry or research? Is the job for testing, designing, coding? What will stand out will depend on this.
However, if I really have to choose one, I always thought that one of the most important things you can learn is to work in a multidisciplinary group. Then, if before graduation a student can have an internship either in the industry or in research that will definitely stand out.
Joshua Pearce Ph.D: The trends were already present before COVID - but they have been accelerated: graduates need to work remotely and function in virtual teams on large complex projects. Many jobs have been virtualized, and recruiters are targeting talent with proven abilities. Many graduates received a crash course in large-scale cooperation with massive open-source development projects like the thousands of engineers that joined Helpful Engineering to combat COVID. They worked on everything from designing PPE that overran the NIHs 3D printing Exchange to complicated electronics for open-source ventilators.

IAEI
L. Keith Lofland: Practical hands-on experience as an installer really stands out. In the electrical industry, our "Bible" is the National Electrical Code (NEC). Hiring someone to enforce the requirements of the NEC is greatly enhanced by someone who not only knows and understands these rules but also has hands-on experience in implementing these rules from a practical standpoint.
Dr. Ramanarayanan "Vish" Viswanathan Ph.D.: All graduates need to 1) have a broad understanding of electrical engineering and have programming skills, 2) be able to work collaboratively, and 3) effectively communicate with co-workers, both orally and through writing. Additionally, depending upon the nature of the job, some would need effective communication skills to interface with external stakeholders, and some would need strong foundations on theory and applications of electrical engineering, including networking of computers and devices.
Dr. Ramanarayanan "Vish" Viswanathan Ph.D.: In general, the whole of the United States has a variety of jobs for graduating electrical engineers. Some of our graduates have landed jobs with companies in the Western part of the US, and many have obtained jobs in companies in and around Mississippi, including those in Texas, Tennessee, Georgia, and Michigan, to name a few.

University of Louisville
J.B. Speed School of Engineering
Cindy Harnett Ph.D.: I had an EE student who was an essential worker because he worked part-time at the power company. The power systems field is going to stay in demand. He had multiple jobs to choose from at graduation.
We also do a lot of device simulations and draw up circuit layouts in software. That's great for remote work, something students are likely to be thinking about now.
For students who are more hardware-oriented, prospects for remote work are still pretty good, thanks to miniaturization and low cost of setting up a workbench. My embedded systems students were able to carry on with remote coursework by taking small circuit boards home.
In 2020 when we can't go into the office, EEs can still be productive working from home.
We do seek grad students to work in research labs and we'll pay their tuition, salary, and health insurance.
Going to grad school means doing cutting-edge research and writing papers. It's exciting but it also means looking for a job in a few years.
It's too soon for me to spot a 2020 trend yet, but in recent years they've largely gone with their co-op employers right out of the master's degree program.

Andre Knoesen Ph.D.: The gap year is an excellent period to expand soft skills (e.g., communication, critical thinking, creativity, writing, and exposure to other cultures) that are essential for new engineers. Basic engineering talents could be maintained by volunteering time in K-12 schools, such as assisting in distance learning efforts.

University of Arkansas, Fayetteville
Electrical Engineering Department
Robert Saunders P.E.: The job market for an electrical engineering student coming out of college is challenging right now. Many companies are still hiring electrical engineering students but, the students can't be as finicky about what jobs they are accepting. More than half of the students are starting their new jobs working remotely, which is a large shift from normal but the companies seem to be using this time to bring the new hires up to speed on policy, procedures, and industry regulations.
Robert Saunders P.E.: Project management and/or leadership training, either at the university they graduated from, or a good online source. Either or both of these would demonstrate the proactive attitude of the student. And get involved in something; community service groups, design a project, anything that shows you are pushing forward professionally and personally, not just sitting at home.
Fred Garber Ph.D.: I think the primary question, in the minds of those who are yet to graduate or are still searching, is in regard to the strength of the technical job market, especially the local job market. But you are in a position to definitively answer that question.
In you article, I would ask that you address the following:
Number of employers looking to fill and number of job offerings in the region (by engineering and computer science major) compared to last year and to the previous five years.
Any noticeable differences in job descriptions Zippia is receiving relative to work environment, benefits, starting salaries, etc.
Many of our soon-to-graduate students would be very interested in these quantitative and qualitative comparisons. Additionally, vast numbers of potential students would benefit from such information to guide their career choices.