Explore jobs
Find specific jobs
Explore careers
Explore professions
Best companies
Explore companies
| Year | # of jobs | % of population |
|---|---|---|
| 2021 | 156 | 0.00% |
| 2020 | 165 | 0.00% |
| 2019 | 173 | 0.00% |
| 2018 | 171 | 0.00% |
| 2017 | 164 | 0.00% |
| Year | Avg. salary | Hourly rate | % Change |
|---|---|---|---|
| 2025 | $83,626 | $40.20 | +2.0% |
| 2024 | $82,021 | $39.43 | +1.2% |
| 2023 | $81,038 | $38.96 | +1.7% |
| 2022 | $79,656 | $38.30 | +2.0% |
| 2021 | $78,089 | $37.54 | +0.7% |
| Rank | State | Population | # of jobs | Employment/ 1000ppl |
|---|---|---|---|---|
| 1 | District of Columbia | 693,972 | 776 | 112% |
| 2 | Virginia | 8,470,020 | 3,696 | 44% |
| 3 | Delaware | 961,939 | 374 | 39% |
| 4 | Washington | 7,405,743 | 2,844 | 38% |
| 5 | Massachusetts | 6,859,819 | 2,545 | 37% |
| 6 | Oregon | 4,142,776 | 1,528 | 37% |
| 7 | Colorado | 5,607,154 | 1,991 | 36% |
| 8 | Maryland | 6,052,177 | 2,140 | 35% |
| 9 | California | 39,536,653 | 12,084 | 31% |
| 10 | Utah | 3,101,833 | 923 | 30% |
| 11 | Rhode Island | 1,059,639 | 314 | 30% |
| 12 | Vermont | 623,657 | 185 | 30% |
| 13 | New Hampshire | 1,342,795 | 381 | 28% |
| 14 | Montana | 1,050,493 | 284 | 27% |
| 15 | Wyoming | 579,315 | 157 | 27% |
| 16 | Minnesota | 5,576,606 | 1,455 | 26% |
| 17 | Idaho | 1,716,943 | 428 | 25% |
| 18 | North Dakota | 755,393 | 176 | 23% |
| 19 | Indiana | 6,666,818 | 1,392 | 21% |
| 20 | Alaska | 739,795 | 156 | 21% |
| Rank | City | # of jobs | Employment/ 1000ppl | Avg. salary |
|---|---|---|---|---|
| 1 | Washington | 1 | 0% | $92,900 |
Seattle University
University of Minnesota - Duluth
New Jersey Institute of Technology
Weber State University
Wilkes University
University of South Alabama

University of Hawaii at Hilo

Gannon University

Eastern Washington University

University of Delaware
University of Colorado at Colorado Springs
University of North Carolina at Charlotte

University of New Hampshire

Allegheny College
Sepehr Mohammadian: 3. The appeal of computer science among students is often attributed to the relatively short journey from concept to execution. Unlike many engineering fields where hardware constraints can impede the swift realization of ideas, the development of software offers a streamlined process. With nothing more than access to a computer and relative proficiency in programming, individuals can swiftly transform their ideas into tangible solutions. This accessibility and agility contribute to the popularity of CS among aspiring students. On the other hand, CS heavily relies on abstract analysis as a fundamental skill for success. Students who struggle with grasping abstract concepts may find themselves frustrated or disengaged with the field.
Julie Brandis: Oregon State University provides support in salary negotiation, also students can work with mentors who are familiar with company hiring practices and wage structures. If you have internship experience, that can help to boost your starting salary.
Christopher Misorski FASM: Maximizing salary potential at the start of your career is not a clear pathway generally. One way that you can be considered more valuable, and hence worth a better salary, is to have participated in a co-op or internship program with a company in your field. This experience gives employers some confidence that you were able to carry out assignments and thrive in a workplace environment. The employer that you worked for may be inclined to offer you a position upon graduation and you are now worth more because you have already proven to them your abilities. Even if they don’t offer you a job (no appropriate open position may be available) your ability to discuss your experiences with the HR recruiter or hiring manager at another company can instill confidence in your selection as a hire. Just remember, if you tell them you did a project, be prepared to explain it so it doesn’t appear you were just in the background of this project, just going along for the ride.
Thomas Congedo PhD: Of course there will always be new software tool developments. But far more important will be developing comprehension of and analytic ability in new reactor and system types - for example, non water-cooled power systems. Again, this is driven by your healthy curiosity.
Thomas Congedo PhD: That comes from your ability to focus on technical product of the highest quality, always seeking to truly understand the customer’s needs. For example, often a customer will phrase a problem by stating the solution he or she assumes. Taking the time to respectfully draw out the thinking further can make you the customer’s hero, and this makes you the person likely to be selected for the challenging and most rewarded assignments.
Seattle University
Civil Engineering
Jhon Smith: Do not be afraid to ask questions to your supervisors (although do not take it to an extreme and become demanding—show initiative). You get the fundamentals of engineering at school and you are equipped to use them but it takes a few years to feel comfortable. Engineering is a profession of practice and it is only through practice that you best learn it.
Jhon Smith: Expand your network, join professional organizations and committees, become valuable in whatever company you work for, never stop learning, seek for opportunities for professional work, get your PE license. After these you will become more valuable naturally and could comfortably ask for a promotion or a salary increase because you’d know you deserve it.
Richard Davis: Engineering offers career opportunities across various industries, from technology and healthcare to infrastructure and environmental sustainability. With technological advancements and the increasing complexity of global challenges, such as climate change, food and clean water, and urbanization, engineers are in high demand to develop innovative solutions. For example, environmental engineers are crucial in developing sustainable solutions to reduce pollution and conserve resources. Engineering provides opportunities for creativity and problem-solving, making it a rewarding career choice for those who enjoy tackling complex problems. The global focus on sustainability and renewable energy presents exciting prospects for engineers to contribute to meaningful projects that positively impact society and the environment.
Mishah Salman Ph.D.: An underappreciated skill that I think will become more sought-after is the ability to validate computer-made decisions and their shortcomings. With the growing prominence of AI use in design, problem solving, and decision making, the engineering field will need experts to error-check decisions made using these technologies. Sometimes there are unexplored gaps that these technologies overlook, and sometimes there are biases or inappropriate assumptions baked into AI-based results. Humans are inherently imaginative and creative. We excel at picking up on things that computer algorithms may miss. Talented experts that recognize and address these issues will remain invaluable in the workforce. Another indispensable skill that is often overlooked in engineering is effective interpersonal communication. Whether in a teamwork context, a leadership role, or a client interaction, competent communication is crucial. This can take the form of conversation, live presentations, written correspondence, and beyond. People that hone their communication skills are often recognized, and tend to be the individuals that are promoted to more senior roles.
Mansooreh Mollaghasemi Ph.D.: Concurrent with building technical skills, they must build soft skills such as communication, teamwork, problem-solving, and leadership. These skills are often the differentiators between good and great engineers.
Megumi Usui: Even after obtaining a degree, it is crucial to recognize that continuous learning is a fundamental aspect of professional development in the workplace. One must cultivate an open-minded attitude and demonstrate a willingness to acquire new knowledge and skills at any time and in any context. Effective communication with colleagues and clients is essential for successful collaboration and project execution. It is important to understand that the professional environment is significantly different from the academic setting. In a company, the focus is delivering work that meets the expectations and standards set by the employer and satisfies the needs of clients, rather than merely fulfilling personal criteria. Furthermore, it is imperative to produce high-quality work consistently. Mediocre performance is unacceptable, and organizations will not hesitate to seek replacements if the work delivered does not meet their standards. Ensuring that your work is thorough, precise, and aligns with the company's objectives is critical for maintaining the position and advancing their career.
Marleen Troy Ph.D., P.E., BCEE: Plan to get your PE license. Take advantage of every opportunity to learn and become proficient with a new skill or a new area of expertise. Continue to develop both your technical and leadership skills.
University of South Alabama
Electrical, Electronics, And Communications Engineering
Edmund Spencer: Look for jobs that have the highest technical content, and try to develop entrepreneurial skills early.
Daniel Armentrout: The excessive number of baby boomer engineers are retiring at high rates and you as a new engineering graduate are desperately needed to make up for their loss in the workforce. You will face challenges in your career we could not anticipate or prepare you for in your education. You will have to adapt and continue to learn new fields of study which did not exist when you graduated. We have given you tools to learn and you will have to use those tools to remain relevant throughout your career. Find your place as an engineer when you can be effective, help humanity, and have fun. Plot a career path where you can utilize your strengths and challenge your mind to do new things. Contribute to making a better world and you will be able to enjoy immense satisfaction and a sense of accomplishment.

University of Hawaii at Hilo
Department of Computer Science
Travis Mandel Ph.D.: Although computer science seems like a highly technical field, soft skills are really what differentiates software engineers. One of the most important qualities of any software engineer is explaining their code clearly at various levels of technical depth and explaining why certain design decisions were made. You could write code that does amazing things, but if that code consists of snippets you pasted from StackOverflow without really fully understanding them, it will be a huge headache for anyone who needs to come into the codebase later and maintain or update it.
Another one is asking the right questions. Imagine you are dropped into a huge codebase and asked to add a new feature (very common!). There's no time to understand everything that is going on, but on the other hand, you need to understand enough of the code to do your task effectively, which involves asking questions. A failure to ask questions will likely result in you wasting a huge amount of time working on something that is ultimately not useful, for instance, re-implementing a complex function that already exists somewhere in the codebase.

Dr. Stephen Frezza Ph.D.: Breadth and depth: Computing is becoming more like engineering; where the value of the product, its lifetime risks, costs, and benefits are more critical than just it's roll-out. So the engineering competencies that have always been a part of computing will become more central. Computing is also expanding; the role of data and the shift of once-research technologies (like machine learning) into production applications will continue to require computing graduates to broaden their base and continue as learners. This will cause shifts in what is considered 'fundamental' and the need for professionals to continue to hone and redevelop their technical skill sets.
Dr. Stephen Frezza Ph.D.: Computing is ubiquitous, and with more industries moving to remote work, location is becoming less critical. If the internet reaches a place reliably, computing jobs can be located there.

Eastern Washington University
Department of Mathematics
Christian Hansen Ph.D.: In the post-pandemic era, a typical workday for a recent graduate will likely involve some form of remote work. I predict that many businesses will benefit from the reduced cost of remote infrastructure compared to the cost of maintaining brick and mortar office space. Many new graduates will continue to spend their day on a computer while collaborating in teams via Zoom and other teleconference tools. People working in disciplines that have traditionally been "on the ground" will move towards more hybrid modes of work, reducing the need for travel and participating in face-to-face meetings and training.
Ajay Prasad: Medical devices, pharmaceuticals, and most consumer goods are still strong. The pandemic is also unlikely to slow the demand in areas like artificial intelligence, robotics, and virtual reality. While more manufacturing jobs are believed to return to the U.S., this likely will drive innovation for the automation of manufacturing processes. Going forward, demand is likely to be strong in infrastructure, renewable energy, automotive, and aerospace industries.
University of Colorado at Colorado Springs
Electrical and Computer Engineering Department
Dr. T.S. Kalkur: Internship experience and tools used in design.
University of North Carolina at Charlotte
Mechanical Engineering
Charles Jenckes: For new graduates
1.Where the candidate went to school and what was studied
2.GPA
3.Any successful internships
4.Projects completed by the student

University of New Hampshire
Physics and Astronomy Department and Space Science Center
Marc Lessard: Students who have been significantly involved in research projects have a distinct advantage over those who haven't. Those who began such work (which is typically paid) as sophomores or juniors often will have played a significant role in these real-world research efforts, which can be very different than what might be tackled as part of a capstone project.
Written and oral presentation skills are also essential!

Allegheny College
Department of Computer Science and Affiliated Faculty in Integrative Informatics
Oliver Bonham-Carter Ph.D.: Pandemic has accelerated social connectivity trends using technology, including technology for remote work, and e-learning, and technology to make e-commerce more comfortable and faster. I foresee these accelerated technology trends to continue, even after the pandemic, and therefore job markets in these areas to continue to grow. Another big surge we have seen is in data analytics, which has been increasing over the last decade, and COVID-19 has spotlighted this field. I expect data analyst jobs to continue to be in demand and to grow. Also, the pandemic showed us the interconnectedness of technology with other areas. As the need to develop better solutions to fight various diseases heightens, for example, I expect jobs in biotech to grow.
Oliver Bonham-Carter Ph.D.: In the next few years, technologies related to artificial intelligence, data analytics, cloud computing, container-orchestration systems, and cybersecurity will continue to become more important and prominent. These technologies have the foundation to improve the quality of life in terms of health, education, fighting misinformation, creating better connections, fighting climate change, etc. IoT with smart devices connected online will continue to rise, thus producing more data, which will necessitate AI, data analytics, and security solutions. Additionally, I foresee 5G technology to play an essential role in the next few years, as e-commerce expands into autonomous delivery services. In the software engineering field, to enable fast, secure, and connected software development, technologies allowing to automate a part of that process, such as version control, containerization, and Kubernetes, will also become increasingly important.