Explore jobs
Find specific jobs
Explore careers
Explore professions
Best companies
Explore companies
| Year | # of jobs | % of population |
|---|---|---|
| 2021 | 606 | 0.00% |
| 2020 | 640 | 0.00% |
| 2019 | 668 | 0.00% |
| 2018 | 661 | 0.00% |
| 2017 | 634 | 0.00% |
| Year | Avg. salary | Hourly rate | % Change |
|---|---|---|---|
| 2025 | $79,371 | $38.16 | +2.0% |
| 2024 | $77,848 | $37.43 | +1.2% |
| 2023 | $76,914 | $36.98 | +1.7% |
| 2022 | $75,603 | $36.35 | +2.0% |
| 2021 | $74,115 | $35.63 | +0.7% |
| Rank | State | Population | # of jobs | Employment/ 1000ppl |
|---|---|---|---|---|
| 1 | District of Columbia | 693,972 | 414 | 60% |
| 2 | Massachusetts | 6,859,819 | 2,232 | 33% |
| 3 | Oregon | 4,142,776 | 1,273 | 31% |
| 4 | New Hampshire | 1,342,795 | 399 | 30% |
| 5 | Virginia | 8,470,020 | 2,245 | 27% |
| 6 | Washington | 7,405,743 | 1,992 | 27% |
| 7 | Minnesota | 5,576,606 | 1,424 | 26% |
| 8 | California | 39,536,653 | 9,855 | 25% |
| 9 | Delaware | 961,939 | 242 | 25% |
| 10 | Colorado | 5,607,154 | 1,298 | 23% |
| 11 | Utah | 3,101,833 | 681 | 22% |
| 12 | Vermont | 623,657 | 139 | 22% |
| 13 | Maryland | 6,052,177 | 1,275 | 21% |
| 14 | Rhode Island | 1,059,639 | 224 | 21% |
| 15 | Wisconsin | 5,795,483 | 1,183 | 20% |
| 16 | Connecticut | 3,588,184 | 695 | 19% |
| 17 | Iowa | 3,145,711 | 596 | 19% |
| 18 | Georgia | 10,429,379 | 1,854 | 18% |
| 19 | North Carolina | 10,273,419 | 1,848 | 18% |
| 20 | Arizona | 7,016,270 | 1,259 | 18% |
| Rank | City | # of jobs | Employment/ 1000ppl | Avg. salary |
|---|---|---|---|---|
| 1 | Holland | 1 | 3% | $69,809 |
| 2 | Huntington Beach | 1 | 0% | $98,235 |
Seattle University
University of Minnesota - Duluth
New Jersey Institute of Technology
Weber State University
Southern Illinois University Edwardsville
Wilkes University
Arizona State University at the Polytechnic Campus
University of San Diego
Oregon State University
University of Nevada - Las Vegas
University of Maryland - College Park
Marshall University
University of Wisconsin - Green Bay

University of Hawaii at Manoa
Tzuyang Yu Ph.D.: A few tips to share with junior engineers are listed below. Be eager to learn from peers and other senior engineers, be open-minded to make friends, be adaptive to different cultures in the work environment, be professional (e.g., be punctual at deadlines, be mindful in appearance), be empathetic (focus on people, not mobile devices).
Christopher Misorski FASM: While it is tough to predict the future with any accuracy, the best skill-set(s) for succeeding revolve around continuing education and learning what is possible with future materials or future manufacturing methods. Just remember, what you may learn at a conference or meeting may not be immediately relevant to your job, but down the road it could provide valuable solutions or insights into new problems that require “fixing”. In addition to continuing education in your field of interest, improving communication skills, both oral and written are important. Having the solution to a problem is useless unless the ideas can be communicated effectively and clearly to the audience that needs to hear the message. Remember, many in the audience are probably not materials engineers or any type of engineer potentially, so communicate at the appropriate level.
Christopher Misorski FASM: Maximizing salary potential at the start of your career is not a clear pathway generally. One way that you can be considered more valuable, and hence worth a better salary, is to have participated in a co-op or internship program with a company in your field. This experience gives employers some confidence that you were able to carry out assignments and thrive in a workplace environment. The employer that you worked for may be inclined to offer you a position upon graduation and you are now worth more because you have already proven to them your abilities. Even if they don’t offer you a job (no appropriate open position may be available) your ability to discuss your experiences with the HR recruiter or hiring manager at another company can instill confidence in your selection as a hire. Just remember, if you tell them you did a project, be prepared to explain it so it doesn’t appear you were just in the background of this project, just going along for the ride.
Thomas Congedo PhD: That comes from your ability to focus on technical product of the highest quality, always seeking to truly understand the customer’s needs. For example, often a customer will phrase a problem by stating the solution he or she assumes. Taking the time to respectfully draw out the thinking further can make you the customer’s hero, and this makes you the person likely to be selected for the challenging and most rewarded assignments.
Seattle University
Civil Engineering
Jhon Smith: Do not be afraid to ask questions to your supervisors (although do not take it to an extreme and become demanding—show initiative). You get the fundamentals of engineering at school and you are equipped to use them but it takes a few years to feel comfortable. Engineering is a profession of practice and it is only through practice that you best learn it.
Jhon Smith: Expand your network, join professional organizations and committees, become valuable in whatever company you work for, never stop learning, seek for opportunities for professional work, get your PE license. After these you will become more valuable naturally and could comfortably ask for a promotion or a salary increase because you’d know you deserve it.
Jiayue Shen: To maximize your salary potential when starting your career in Mechanical Engineering Technology, contemplate acquiring certifications like the FE or PE license, or additional training in high-demand specialized areas such as semiconductors. Moreover, gaining practical experience through academic clubs, undergraduate research, internships, or co-op programs can increase your appeal to employers, potentially resulting in higher salary offers.
Jiayue Shen: It's essential to stay curious and eager to learn, as the field is continually evolving. Keeping abreast of the latest technologies and trends through seeking out learning opportunities and maintaining a curiosity about new developments is crucial. Additionally, building a robust professional network and seeking mentorship can offer valuable insights and guidance. Embracing interdisciplinary projects is also key, as the field is expanding beyond purely mechanical aspects. Being dynamic and proactive in interacting with individuals from diverse backgrounds will be beneficial, as collaboration across disciplines is increasingly important in this field.
Jiayue Shen: In the next 3-5 years, skills such as electronic control, basic programming, and critical thinking will become increasingly important in the field of Mechanical Engineering Technology. As industries like robotics, automation, and semiconductors continue to grow, professionals will need to be well-versed in these areas to stay competitive. Additionally, skills such as collaboration and effective oral and written communication will be crucial for advancing in one's career.
Richard Davis: Engineering offers career opportunities across various industries, from technology and healthcare to infrastructure and environmental sustainability. With technological advancements and the increasing complexity of global challenges, such as climate change, food and clean water, and urbanization, engineers are in high demand to develop innovative solutions. For example, environmental engineers are crucial in developing sustainable solutions to reduce pollution and conserve resources. Engineering provides opportunities for creativity and problem-solving, making it a rewarding career choice for those who enjoy tackling complex problems. The global focus on sustainability and renewable energy presents exciting prospects for engineers to contribute to meaningful projects that positively impact society and the environment.
Mishah Salman Ph.D.: An underappreciated skill that I think will become more sought-after is the ability to validate computer-made decisions and their shortcomings. With the growing prominence of AI use in design, problem solving, and decision making, the engineering field will need experts to error-check decisions made using these technologies. Sometimes there are unexplored gaps that these technologies overlook, and sometimes there are biases or inappropriate assumptions baked into AI-based results. Humans are inherently imaginative and creative. We excel at picking up on things that computer algorithms may miss. Talented experts that recognize and address these issues will remain invaluable in the workforce. Another indispensable skill that is often overlooked in engineering is effective interpersonal communication. Whether in a teamwork context, a leadership role, or a client interaction, competent communication is crucial. This can take the form of conversation, live presentations, written correspondence, and beyond. People that hone their communication skills are often recognized, and tend to be the individuals that are promoted to more senior roles.
Mansooreh Mollaghasemi Ph.D.: Concurrent with building technical skills, they must build soft skills such as communication, teamwork, problem-solving, and leadership. These skills are often the differentiators between good and great engineers.
Megumi Usui: Even after obtaining a degree, it is crucial to recognize that continuous learning is a fundamental aspect of professional development in the workplace. One must cultivate an open-minded attitude and demonstrate a willingness to acquire new knowledge and skills at any time and in any context. Effective communication with colleagues and clients is essential for successful collaboration and project execution. It is important to understand that the professional environment is significantly different from the academic setting. In a company, the focus is delivering work that meets the expectations and standards set by the employer and satisfies the needs of clients, rather than merely fulfilling personal criteria. Furthermore, it is imperative to produce high-quality work consistently. Mediocre performance is unacceptable, and organizations will not hesitate to seek replacements if the work delivered does not meet their standards. Ensuring that your work is thorough, precise, and aligns with the company's objectives is critical for maintaining the position and advancing their career.
Michael Denn: 1. Become the expert in whatever you do. 2. Understand how your work fits into the bigger picture and keep that in mind when you do your work. 3. Keep learning! Your engineering degree is not the end of your education! 4. Take stretch assignments and opportunities whenever you can.
Michael Denn: The answers to this question are largely the same as the answer to question 1. However, here are some additional points: 1. Excel in your job. Become the person everyone goes to for whatever type of work you do. 2. Develop and maintain a career plan. Make sure your assignments and tasks align with your plan. When you have the opportunity to change positions, keep you plan in mind.
Marleen Troy Ph.D., P.E., BCEE: Plan to get your PE license. Take advantage of every opportunity to learn and become proficient with a new skill or a new area of expertise. Continue to develop both your technical and leadership skills.
Arizona State University at the Polytechnic Campus
Manufacturing Engineering
Jerry Gintz CMfgE: From a manufacturing engineering perspective, compensation is normally tied to capability so the more relevant skills a candidate has entering the workforce the higher compensation they can expect to receive. This is especially true in manufacturing given the shortage of qualified engineering talent available for hire. Additionally, consider focusing on industrial automation as a resource to aid efficient production. Manufacturing is always looking to increase efficiency and a foundational knowledge of industrial automation systems will serve you well as you build a career in manufacturing engineering.
University of San Diego
Mechanical Engineering
Dr. Imane Khalil: While technologies like AI and data science are becoming important across all sectors from medicine to engineering, the most crucial skill for any profession remains people skills. Continuously developing your interpersonal abilities, such as respecting colleagues, honesty, reliability, and effective communication, is the most important key to success at work.
Devin Roach PhD: Maximizing your salary potential starts with setting yourself apart from other students by developing specialized, marketable skills. To achieve this, students should aim to acquire targeted experiences, such as learning full stack programming, participating in internships that hone specific skills, or dedicating their time to a focused extracurricular activity.
Devin Roach PhD: Apart from a strong knowledge of mechanical engineering fundamentals, students should focus on developing proficiency in emerging technologies such as machine learning (ML) applied to mechanical systems. Additionally, skills in computer-aided design (CAD) and simulation software will continue to be essential, especially as these tools evolve to incorporate advanced features like generative design and optimization algorithms. Moreover, expertise in sustainable design principles and renewable energy systems will likely become increasingly important as industries prioritize environmental sustainability. Finally, strong communication and collaboration skills will remain crucial, especially as mechanical engineers work in interdisciplinary teams and interact with stakeholders from diverse backgrounds.
Devin Roach PhD: I would advise all graduates starting their careers in Mechanical Engineering to prioritize continuous learning and skill development. Stay updated on the latest advancements in the field such as emerging technologies, updated design standards, or innovative manufacturing processes. Additionally, seek out opportunities for hands-on experience to enhance your practical skills and industry knowledge. Networking with professionals in your field and joining professional organizations like ASME can also provide valuable connections and resources for career growth. Finally, don't underestimate the importance of soft skills such as communication, teamwork, and problem-solving, as they are often just as crucial as technical expertise in succeeding in the workplace.
Brendan O'Toole Ph.D.: Maximizing salary potential may depend on what type of job or field the new graduate enters. Studies have shown that certifications and advanced degrees can lead to higher earning potential. Depending on the job and field an advanced degree in engineering, business, or project management may be required in order to advance. New ME graduates working in certain mechanical design and HVAC fields may need to get a Professional Engineering license in order to maximize their earning potential.
Brendan O'Toole Ph.D.: Mechanical Engineering jobs vary depending on the industry or even subfield within a specific industry. Things that are important to all fields and jobs would be time management and communications skills. Improving these things can be helpful in all aspects of work and life in general. New graduates should learn how to make themselves useful for the specific job they are in. This may require learning more Computer Aided Design and Analysis tools, or project management tools, or specific lab or manufacturing tools or programs. Artificial Intelligence (AI) is here to stay and will most likely find its way into all work fields (engineering and others). New graduates should look for innovative ways to apply AI to their new jobs, even if it is not being used when they first start.
Brendan O'Toole Ph.D.: A Mechanical Engineering (ME) degree prepares students for a wide variety of careers. New ME graduates working for companies with large engineering teams will probably work in one area such as design, analysis, project management, manufacturing, testing, or customer/field support. ME graduates working for smaller companies or startups will be expected to work in more of these areas since the engineering team will be smaller. It is important for new graduates to get some experience so that they can figure out what type of job they like. If they find that they do not like the type of work they are doing in their first job, then they should look for a different type of job. They should also realize that their initial degree exposed them to a wide variety of general math, science, and engineering topics. They learned how to gather information and use resources available to solve problems. But there is much more to learn. Each job will require unique skills and more learning.
Amir Riaz Ph.D.: Many of the skills that you developed during the course of your Bachelors degree are fundamental, such as self learning, teamwork, engineering approach to practical problems. These you will continue to develop further as you progress in your career. Looking to the future, learn coding and engineering softwares, e.g. ANSYS, pay attention to machine learning and additive manufacturing.
Amir Riaz Ph.D.: Mechanical engineering education gives you a broad foundation from which to make an impact in the most diverse set of practical fields, ranging from quantum computing to biomedical engineering to designing spacecraft, and everything in between. Be inquisitive and creative. Every practical problem that you encounter in your field has an engineering solution linked to what you have learned in class and is waiting to be discovered by you.
Amir Riaz Ph.D.: Learn new skills from professional and technical courses. Obtain a Master's degree at some point.
Mohammed Daqaq: This is a difficult question to answer and is very much dependent on how satisfied an individual is about their job. I can comment on what I hear from students with regards to their ME education. Most engineers choose ME because of its breadth and that it allows them more freedom to maneuver the job market once they graduate. They can clearly see that, despite being one of the most traditional engineering disciplines, it is still very trendy with employers. They also like the hands-on nature of the discipline where they get to design, optimize, and build physical components that work and move together to achieve a desired task. As for the dislikes, some students complain about the fact that ME requires an in-depth understanding of many mathematical concepts which many students find to be challenging.
Mohammed Daqaq: Given its breadth, I feel that ME is the most versatile engineering degree. It covers many different fundamental fields including thermofluidic sciences, dynamical systems, controls, design, mechatronics, robotics, etc. With minor additional training, ME graduates can also easily adapt to work in the aerospace industry, nuclear, and bioengineering domains. Thus, an ME degree is always trendy and companies seek to hire ME graduates regardless of how the market changes.
Mohammed Daqaq: It depends on what aspect of the job they are hired to do. Some graduating MEs work in industrial plants where they are expected to deal with and fix engineering related problems, or work on the design and testing of innovative industrial solutions. Many MEs end up in the sales and maintenance departments of companies that manufacture specialized machinery and equipment. Some ME graduates are hired by the research departments of companies and federal labs where they participate in the research and development of new technologies, etc. A recent trend that we have been observing with our graduates is that they are being sought after by major consulting companies especially in business development and finance. Such companies like the versatility of the engineering education, and the logical/structured way of thinking that engineers are trained to follow during their studies.
Marshall University
Engineering
Dr. Yousef Sardahi: In the next 3-5 years, several skills are expected to become increasingly important in the mechanical engineering field: Advanced Computational Skills, Robotics and Automation, Additive Manufacturing and 3D Printing, Renewable Energy Technologies, Data Analysis and IoT, Materials Science, Systems Engineering and Integration, Project Management and Leadership, Interdisciplinary Collaboration, Communication and Soft Skills.
Dr. Yousef Sardahi: To maximize salary potential in mechanical engineering, focus on companies with growth opportunities, develop in-demand skills and specializations, and enhance your marketability through continuous learning and effective networking. Negotiating skills and considering geographical influences on salary also play a key role.
Dr. Yousef Sardahi: In the next 3-5 years, several skills are expected to become increasingly important in the mechanical engineering field:
Advanced Computational Skills: Proficiency in simulation and modeling software (like ANSYS, SolidWorks, or MATLAB) will be crucial as these tools become more integral in designing and testing complex systems.
Robotics and Automation: With industries moving towards automation, skills in robotics, automated systems, and knowledge of AI integration will be highly sought after.
Additive Manufacturing and 3D Printing: Expertise in 3D printing and additive manufacturing techniques will be valuable as these technologies revolutionize product development and manufacturing processes.
Renewable Energy Technologies: As the world shifts towards sustainable energy sources, mechanical engineers with knowledge in solar, wind, and other renewable energy technologies will be in high demand.
Data Analysis and IoT: Skills in data analytics and understanding the Internet of Things (IoT) will be important as more mechanical systems are connected and produce large amounts of data.
Materials Science: Knowledge in advanced materials, such as composites or smart materials, will be crucial for developing more efficient and sustainable products and systems.
Systems Engineering and Integration: The ability to understand and integrate various subsystems within a larger system will be key, especially in complex projects.
Project Management and Leadership: As projects become more complex, skills in project management and leadership will be essential for overseeing projects and leading teams effectively.
Interdisciplinary Collaboration: The ability to work effectively across disciplines, understanding aspects of electrical engineering, computer science, and even business, will be increasingly important.
Communication and Soft Skills: Strong communication skills, both for technical and non-technical audiences, along with teamwork and problem-solving skills, will always be invaluable in the engineering field.
University of Wisconsin - Green Bay
Mechanical Engineering Related Technologies/Technicians
Uises Gonzalez-Valle: We are currently transitioning to an era where computers are becoming a fundamental part of every field and engineering (especially ME and MET) is one of the more beneficiated fields as well as one that is adopting this transition faster. Thus, as a technical skill, anything related to computers is beneficial for professional development. Computer-aided design (CAD), Data Analysis, Machine learning, and a good awareness of cybersecurity are some examples of computer-based skills that are fundamental for an engineer in our current society. In addition to this, interpersonal skills are also important for an engineer; adaptability, communication, cross-disciplinary knowledge, and project management are some skills that will contribute to building a great engineer.
Uises Gonzalez-Valle: The beginning of professional life is not simple independent of the career path that you follow and ME and MET can have their own complications. However, some good advice would be to develop independence and adaptability which are key traits of an engineer, and always keep yourself updated with the most recent technological developments. If you are independent and adaptable, you have all the skills to learn and further your professional development. In addition, I would say it is essential to start building a network, including peers and mentors. Having a strong network of peers and mentors helps you significantly to progress in your professional line. From day-to-day to daily changing decisions, having a strong network to support would significantly help in building your professional path. Lastly, I would say that having a good Work-life balance is vital too, since our personal life is as important as our professional life. Remember, we should work to live instead of live to work.
Uises Gonzalez-Valle: The beginning of professional life is not simple independent of the career path that you follow and ME and MET can have their own complications. However, some good advice would be to develop independence and adaptability which are key traits of an engineer, and always keep yourself updated with the most recent technological developments. If you are independent and adaptable, you have all the skills to learn and further your professional development. In addition, I would say it is essential to start building a network, including peers and mentors. Having a strong network of peers and mentors helps you significantly to progress in your professional line. From day-to-day to daily changing decisions, having a strong network to support would significantly help in building your professional path. Lastly, I would say that having a good Work-life balance is vital too, since our personal life is as important as our professional life. Remember, we should work to live instead of live to work.

University of Hawaii at Manoa
Song Choi Ph.D.: On a ME student resume, the things that I would look for vary depending on the position description, but it would be under the 'projects that were conducted by the student as 1) extramural undergraduate research projects that may be part of work/study, senior design/capstone projects, other course-related projects, and personal interest projects.
Next may be their overall performance in classes via a GPA and/or descriptions of skills within the projects described above. As leadership, organization, and communications are also very important assets, close scrutiny of positions on/for the projects, and involvement and roles in student chapters of professional societies, clubs, extramural activities, etc.
Overall, GPA is not of primary importance, but it does show how quickly a student can/may pick up new ideas and concepts thoroughly.
Song Choi Ph.D.: Critical thinking - logical, problem-solving methodology... I'm not quite sure to categorize this as soft/professional skills or hard/technical skills, but probably one of the most necessary assets.
Communication - written, verbal, and overall listening (helps focus on the problem statement and requirements). Most, if not all, projects/tasks are worked in large groups; thus, listening and expressing correctly is important.
Time management - scheduling of tasks and deadlines are important in all levels of engineering, from small fabrication projects/tasks to medium-sized manufacturing projects/tasks to large development/research endeavors. In Hawaii, one of the most important has been the transportation of materials, parts, components, etc., as most items are flown or shipped to us, and the overall project schedule is dependent on the availability of sub-units.
Collaboration - as most if not all engineering projects are dependent on multiple sub-categories. Due to the collaborative nature of engineering, communication is of importance again.
Creativity, innovation, and initiative - it's really about making our future better, more convenient, safer, cleaner, etc. Think outside of the box or live outside of your comfort zone.
Detail-oriented - it is about replicating results. Everything an engineer performs should be documented and clear.
Honesty and integrity as there have been too many fabricated claims and fraud as well as engineering espionage.
Song Choi Ph.D.: Fundamental competence and understanding of the mathematics (calculus), (physics), and fundamental engineering courses, generally the 2nd year and 3rd year courses. If the position requires more development/research type work, a higher competence, and understanding in the 4th year, more specific topic courses would be required. Project descriptions would be extremely important to assess these details.
For general engineering work, overall competence in all facets of mechanical engineering would be preferred - mechanics, fluids, thermodynamics, and materials/manufacturing.
As more and more mechanical engineering projects require the use of computer software and packages, a fundamental understanding of programming and the use of specific software - AutoCad, SolidWorks, MatLab, Simulink, computer languages, etc. would be assets.
If critical thinking is categorized as a technical skill involving logical thinking, it should also be considered...
Documentation of all aspects of engineering.
Song Choi Ph.D.: This would be critical thinking, communication, initiative, creativity, and leadership.