Explore jobs
Find specific jobs
Explore careers
Explore professions
Best companies
Explore companies
Software engineer job growth summary. After extensive research, interviews, and analysis, Zippia's data science team found that:
The projected software engineer job growth rate is 21% from 2018-2028.
About 284,100 new jobs for software engineers are projected over the next decade.
Software engineer salaries have increased 10% for software engineers in the last 5 years.
There are over 325,319 software engineers currently employed in the United States.
There are 339,938 active software engineer job openings in the US.
The average software engineer salary is $100,260.
| Year | # of jobs | % of population |
|---|---|---|
| 2021 | 325,319 | 0.10% |
| 2020 | 622,548 | 0.19% |
| 2019 | 344,722 | 0.10% |
| 2018 | 700,980 | 0.21% |
| 2017 | 673,685 | 0.20% |
| Year | Avg. salary | Hourly rate | % Change |
|---|---|---|---|
| 2025 | $100,260 | $48.20 | +3.4% |
| 2024 | $96,956 | $46.61 | +2.3% |
| 2023 | $94,761 | $45.56 | +1.8% |
| 2022 | $93,088 | $44.75 | +1.7% |
| 2021 | $91,524 | $44.00 | +1.9% |
| Rank | State | Population | # of jobs | Employment/ 1000ppl |
|---|---|---|---|---|
| 1 | District of Columbia | 693,972 | 1,104 | 159% |
| 2 | Washington | 7,405,743 | 6,948 | 94% |
| 3 | Delaware | 961,939 | 650 | 68% |
| 4 | Vermont | 623,657 | 418 | 67% |
| 5 | Virginia | 8,470,020 | 5,588 | 66% |
| 6 | Massachusetts | 6,859,819 | 4,544 | 66% |
| 7 | Rhode Island | 1,059,639 | 704 | 66% |
| 8 | Oregon | 4,142,776 | 2,587 | 62% |
| 9 | Maryland | 6,052,177 | 3,611 | 60% |
| 10 | Utah | 3,101,833 | 1,777 | 57% |
| 11 | California | 39,536,653 | 19,681 | 50% |
| 12 | New Hampshire | 1,342,795 | 672 | 50% |
| 13 | Colorado | 5,607,154 | 2,663 | 47% |
| 14 | Montana | 1,050,493 | 479 | 46% |
| 15 | Minnesota | 5,576,606 | 2,314 | 41% |
| 16 | Wyoming | 579,315 | 237 | 41% |
| 17 | North Dakota | 755,393 | 291 | 39% |
| 18 | Idaho | 1,716,943 | 631 | 37% |
| 19 | Nebraska | 1,920,076 | 683 | 36% |
| 20 | New Jersey | 9,005,644 | 3,160 | 35% |
| Rank | City | # of jobs | Employment/ 1000ppl | Avg. salary |
|---|---|---|---|---|
| 1 | Annapolis | 484 | 1228% | $82,867 |
| 2 | Mountain View | 142 | 177% | $126,771 |
| 3 | Lansing | 195 | 168% | $74,178 |
| 4 | Hartford | 156 | 127% | $80,240 |
| 5 | Des Moines | 162 | 75% | $72,460 |
| 6 | Tallahassee | 140 | 73% | $71,922 |
| 7 | Atlanta | 342 | 72% | $74,139 |
| 8 | Baton Rouge | 140 | 61% | $76,706 |
| 9 | Boston | 360 | 53% | $83,520 |
| 10 | Washington | 229 | 34% | $84,161 |
| 11 | Sacramento | 146 | 29% | $122,915 |
| 12 | Denver | 194 | 28% | $72,788 |
| 13 | San Francisco | 225 | 26% | $126,797 |
| 14 | Indianapolis | 163 | 19% | $72,476 |
| 15 | Phoenix | 206 | 13% | $83,740 |
| 16 | San Diego | 167 | 12% | $106,436 |
| 17 | Chicago | 220 | 8% | $75,952 |
| 18 | New York | 270 | 3% | $93,074 |
Hampton University
San Jose State University
Seattle University
University of Minnesota - Duluth
Weber State University
Wilkes University
California State University - Sacramento
Nova Southeastern University
Carnegie Mellon University
Duke University
Oklahoma State University Institute of Technology - Okmulgee
Seminole State College of Florida
University of Wisconsin - Platteville
Eastern Washington University
Northwestern University
Sepehr Mohammadian: 2. Computer science remains in high demand in today's job market, with California exemplifying this trend. In recent years, the number of open positions in the state has exceeded the average demand rate by 1.5 times. At the University of the Pacific, our CS program is designed to equip students with the necessary skills and experiences to thrive in this landscape. Through our co-op program, in collaboration with recruiters such as Nvidia, HP, and Lawrence Livermore National Lab, students have the opportunity to participate in paid internships lasting approximately 8 months. These internships provide invaluable exposure to real-world work settings and allow students to apply their knowledge in practical contexts and gain valuable industry insights. It is worth noting that many of our graduates choose to return to the same company post-graduation.
Sepehr Mohammadian: 1. This is a pretty broad question. CS degree graduates can engage in different tasks and responsibilities based on the nature of their profession. Examples include 1) software engineering, in which the individual's efforts are toward leading or contributing to software development projects, 2) IT management, where the individual mainly oversees technology strategies and their implementation, 3) cybersecurity, where the individual's responsibilities are associated with the protection of systems and data from cyber threats, and 4) data and AI engineering, where the individual works on machine learning applications and analyze and derive insights from large datasets.
Sepehr Mohammadian: 3. The appeal of computer science among students is often attributed to the relatively short journey from concept to execution. Unlike many engineering fields where hardware constraints can impede the swift realization of ideas, the development of software offers a streamlined process. With nothing more than access to a computer and relative proficiency in programming, individuals can swiftly transform their ideas into tangible solutions. This accessibility and agility contribute to the popularity of CS among aspiring students. On the other hand, CS heavily relies on abstract analysis as a fundamental skill for success. Students who struggle with grasping abstract concepts may find themselves frustrated or disengaged with the field.
Julie Brandis: Oregon State University provides support in salary negotiation, also students can work with mentors who are familiar with company hiring practices and wage structures. If you have internship experience, that can help to boost your starting salary.
Julie Brandis: Engineering is a highly transferable degree – so take the time to visit with many employers. At Oregon State University we provide those opportunities beyond traditional career fairs. Companies are seeking students who do well in the classroom as well as students who engage in other activities and clubs – that can be sports, a student club or community organization.
Christopher Misorski FASM: Maximizing salary potential at the start of your career is not a clear pathway generally. One way that you can be considered more valuable, and hence worth a better salary, is to have participated in a co-op or internship program with a company in your field. This experience gives employers some confidence that you were able to carry out assignments and thrive in a workplace environment. The employer that you worked for may be inclined to offer you a position upon graduation and you are now worth more because you have already proven to them your abilities. Even if they don’t offer you a job (no appropriate open position may be available) your ability to discuss your experiences with the HR recruiter or hiring manager at another company can instill confidence in your selection as a hire. Just remember, if you tell them you did a project, be prepared to explain it so it doesn’t appear you were just in the background of this project, just going along for the ride.
Dr. Yohannes Bekele: By entering the computer engineering profession now, individuals can take advantage of the high skilled-power demand in the field, diverse career paths broadly classified under hardware and software sub-areas, lucrative salaries as compared to other fields, continuous learning opportunities, and the potential for entrepreneurship in changing ideas into startup businesses easily. It is a field that offers long-term growth prospects and the chance to contribute to the development of cutting-edge technologies.
Dr. Yohannes Bekele: A computer engineer's daily tasks can be in the hardware or in the software areas. Some common responsibilities in hardware include designing and developing computer hardware components like processors, circuits and memory devices and creating prototypes and testing hardware products to ensure they meet specifications. In addition, analyzing test data and modifying hardware designs as needed is also the responsibility of a computer engineer. For software side, a computer engineer can do writing code and developing software especially focusing on the underlying hardware and interfacing with it such as kernel level programming and debugging existing software programs and ensuring systems run smoothly. Additionally, a computer engineer is responsible for designing and developing electrical systems and components required for computing systems and modification of electrical circuits based on function assessments. For someone entering the field as a junior or new computer engineer, typical daily activities may involve assisting senior engineers, writing code, testing products, attending training sessions focusing on the above mentioned concentration areas, and participating in meetings to learn about ongoing projects.
Dr. Yohannes Bekele: In being a computer engineer, people like all the advantages in the field including attractive compensation packages and lucrative salaries, the intellectual satisfaction of solving complex problems, opportunities for continuous learning and innovation as technology rapidly evolves, ability to work on cutting-edge technologies and contribute to their development and the diverse career paths across hardware, software, embedded systems, and various industries. The main struggle most people have in becoming a computer engineer is its steep learning curve especially when it comes to hardware design and related areas. It takes years to become proficient in the field as compared to other fields such as software programming where a relatively shorter amount of time is enough to join the workforce. In addition, the ever evolving environment with constantly changing technologies, standards, and the need to keep learning new things makes it difficult to achieve the epitome in the field.
San Jose State University
Mechanical Engineering
Professor Winncy Du: Mechatronics and system engineering. Almost everything around us is a mechatronics system (*mech*anicia+elec*tronics*+programming): iphones (vibrates and displays, senses); refrigerators, cars, etc. Mechatronics is an *integrated *system, thus a system engineer is very important -- ensure all the subsystems interact properly and work together as a whole system efficiently. Be emotional intelligence (EQ) -- one of today's most in-demand human power skills. Not only be an engineer, but be a leader. Leaders who excel at EQ will be the most sought after by, and indispensable to, organizations, industry, and academia.
Thomas Congedo PhD: Of course there will always be new software tool developments. But far more important will be developing comprehension of and analytic ability in new reactor and system types - for example, non water-cooled power systems. Again, this is driven by your healthy curiosity.
Dr. Sridhar Ramachandran: As a Computer Science graduate, it’s vital to work on independent projects outside of course projects or assigned tasks. This allows you to apply your knowledge and explore new areas and opportunities. Showcasing these projects in a digital portfolio provides a visual and tangible representation of your skills and growth. Emphasizing your attention to clean coding and documentation reflects your professionalism and attention to detail. The field is vast and rapidly evolving, so stay curious, keep learning, and enjoy your professional journey. Avoid getting caught up in fleeting trends. Understanding the difference between work, job, and career is crucial; find work and jobs that contribute to your long-term career aspirations while steadily maintaining your focus on your career goals. In addition, being aware of the organization’s environment and culture at the workplace you intend to work at is important. Familiarize yourself with workplace methodologies like Agile, Just-In-Time (JIT), DevOps, Scrum, Kanban, Lean, Feature-Driven Development (FDD), Extreme Programming (XP), Rapid Application Development (RAD), and Software Development Life Cycle (SDLC) (to name a few). Each organization will have its unique blend of these elements, and knowing what works best for you will help you thrive in your chosen career path. Remember, the key to success in this dynamic field is continuous learning and adaptation.
Dr. Sridhar Ramachandran: To optimize your earning potential in the field of Computer Science, it’s important to establish a solid educational foundation and master widely-used programming languages and technologies. Internships offer invaluable hands-on experience, and obtaining industrial certifications in specialized areas can significantly increase your marketability. Cultivating a robust professional network and honing your salary negotiation skills are also key. It’s important to stay updated with the latest technological advancements, salary trends, and consider focusing on a niche area in high demand. From the outset of your career conversations, it’s beneficial to communicate clear salary expectations. Conduct thorough research on the current market rates for the role you’re targeting to ensure your expectations are realistic. Understanding your worth in the market is crucial, and you should aim for a salary that not only reflects your skills and experience but also keeps you motivated and invested in your work. Remember, while salary is a significant factor, aspects like work-life balance and job satisfaction also play a vital role in your overall career satisfaction. Aim for a win-win salary negotiation where both you and your employer feel the compensation is fair and equitable.
Dr. Sridhar Ramachandran: The field of Computer Science is a dynamic and rapidly evolving landscape. Over the next 3-5 years, several skills will gain prominence. Artificial Intelligence and Machine Learning will be indispensable due to the surge in data generation. Cybersecurity will become critical as our reliance on digital systems intensifies, and it will be everyone’s prerogative to ensure the security of their digital assets. Essential cybersecurity skills will include understanding of network security, proficiency in security software tools, knowledge of threat and vulnerability assessment, and the ability to implement incident response and recovery plans. Proficiency in Cloud Computing platforms such as AWS, Google Cloud, and Microsoft Azure will be sought after as businesses increasingly transition to the cloud. Data Science and Analytics will continue to be pivotal for data-driven decision making. Quantum Computing, though nascent, holds the potential to revolutionize the field. Soft skills like communication, teamwork, and problem-solving will be vital in managing complex, interdisciplinary projects. In this dynamic field, employees who know how to learn, unlearn, and relearn will have a competitive advantage. This is particularly true with the emerging importance for AI programming languages like Julia, Swift for TensorFlow, and Rust.
Seattle University
Civil Engineering
Jhon Smith: Professional skills such as being able to communicate clearly, being flexible, open-minded, eager to take on challenges, adept and working with others and taking ownership of the projects tasks given to you. Staying grounded to the fundamental concepts you learn in school so every time you run a sophisticated piece of software to do design you must be able to use those fundamentals to check the results.
Richard Davis: Likes: Engineers often enjoy working on cutting-edge technologies and solving challenging problems. For example, a biomedical engineer might find satisfaction in developing a new prosthetic limb that improves a patient's quality of life. The sense of accomplishment from seeing their designs come to life or their solutions implemented successfully can be gratifying. Engineers typically enjoy working in collaborative teams, where they can bounce ideas off colleagues. Engineering offers the chance to make a tangible difference in the world, whether it is through developing life-saving medical devices, improving infrastructure, or creating sustainable energy solutions. Dislikes: Like any profession, engineering has its share of challenges. It can sometimes involve long hours, especially when deadlines are approaching or projects hit unexpected roadblocks. Dealing with technical challenges and troubleshooting can be frustrating and mentally taxing, mainly when solutions are elusive. Depending on the industry and specific role, engineers may encounter bureaucracy or red tape that slows down project progress. Engineers may also face ethical dilemmas, such as balancing cost-effectiveness with safety or environmental concerns, which can be challenging to navigate.
Richard Davis: Engineers engage in various daily activities that are intellectually stimulating and rewarding. Every task is a step toward a tangible accomplishment, from innovating, designing, testing, and implementing new technologies to troubleshooting and optimizing existing systems to reduce costs, increase productivity, and improve quality. They may spend time in meetings discussing project progress, collaborating with colleagues, and planning future steps, all of which contribute to the sense of achievement. Engineers often use software tools to create designs, analyze data, and simulate systems, further enhancing their productivity and satisfaction. Depending on the field, they might spend time in labs conducting experiments, on-site overseeing construction or manufacturing processes, or in offices working on plans and reports, all of which are opportunities to see their work come to fruition. Entry-level Engineers: A bachelor's degree in engineering trains engineers with strong analytical and problem-solving skills. Entry-level engineers might start with tasks like data collection and analysis or assisting senior engineers with projects. Entry-level engineers might also spend time shadowing more experienced colleagues, attending training sessions, and gradually taking on more responsibility and management as they gain experience.
Richard Davis: Engineering offers career opportunities across various industries, from technology and healthcare to infrastructure and environmental sustainability. With technological advancements and the increasing complexity of global challenges, such as climate change, food and clean water, and urbanization, engineers are in high demand to develop innovative solutions. For example, environmental engineers are crucial in developing sustainable solutions to reduce pollution and conserve resources. Engineering provides opportunities for creativity and problem-solving, making it a rewarding career choice for those who enjoy tackling complex problems. The global focus on sustainability and renewable energy presents exciting prospects for engineers to contribute to meaningful projects that positively impact society and the environment.
Megumi Usui: Many individuals aspire to earn a substantial salary right from the beginning of their careers. However, this is not typically how the professional world operates. it is essential to demonstrate to your employer that you are a skilled, valuable, and irreplaceable asset. This process takes time and dedication. Avoid pressuring your employer for immediate rewards based solely on self-perception. While family may view you as exceptional, in the professional realm, you must distinguish yourself through your actions. Prove your worth by consistently arriving on time, working diligently, completing tasks swiftly and accurately, and exceeding expectations. Take a proactive approach to your projects and strive to impress your employer in every conceivable way. Continuously acquiring new skills that are valuable to the company is crucial. Additionally, building a strong network within your field by making professional connections and fostering friendships can significantly enhance your career prospects. By embodying these qualities, you can effectively demonstrate your value and potentially achieve the financial and professional rewards you seek.
Marleen Troy Ph.D., P.E., BCEE: Technical, management, leadership, and organizational skills will always be important. Becoming proficient in new areas such as AI (artificial intelligence) best practices will be needed.
Kin Chung Kwan: Computer science is rapidly growing, with new technologies emerging daily. The desired skill set can vary from year to year. We should always stay updated on the latest global developments and prepare to learn something new. Keeping your skills up-to-date and aligning them with the current needs of employers and target customers is crucial to maximizing salary potential.
Kin Chung Kwan: We are in an Artificial Intelligence (AI) revolution. AI development will continue to be a global priority and dominate the tech landscape in the next few years. For computer scientists seeking career progression, gaining a comprehensive understanding of AI is crucial. Furthermore, understanding limitations, ethical considerations, safety and security measures associated with AI is an important responsibility that every computer scientist should be aware of.
Kin Chung Kwan: Programming is the cornerstone of computer science. Solving problems effectively through proficient programming is a vital key to career success. Learning programming is like athletic training. One cannot become a skilled athlete solely through attending lectures. Programming skills can only be improved with consistent practice. Learning new techniques and repeated practice can help professionals refine their programming abilities and achieve career success.
Nova Southeastern University
Computer Software And Media Applications
Junping Sun Ph.D.: Being capable to perform, being competitive to excel, being able to communicate as a team player, being a connoisseur to act, being a clairvoyance to perceive, being creative to innovate, being conscientious with professional integrity.
Junping Sun Ph.D.: Computer Science and its applications in various fields are very dynamic and constantly evolving, and anyone in the fields needs to prepare to be adaptive by lifelong learning.
Junping Sun Ph.D.: Computer science is an algorithm science for problem solving in real world applications. The skills of problem solving require critical thinking with solid foundation of the professional knowledge in the relevant domains. It is crucial to have strong critical thinking skill with sophisticated logical and philosophical perspectives.
Jonathan Aldrich: Hone your skills so you are great at what you do, and gradually build to be great at what you want to do next. When you are confident in your current position, look for the next step--which may be a promotion in your current organization or a new job outside it.
Jonathan Aldrich: AI is a powerful new tool but it is also unreliable. Learn how you can use it but also what its limitations are, so that you can protect yourself and your customers from those limitations. Always have a way to double-check that the results of AI are sensible and appropriate. No one is a lone coder anymore--you'll be more effective if you can work with other people and with tools that multiply your capabilities. Work on your teamwork skills and keep your eye out for new tools and technologies that make you more effective.
Jonathan Aldrich: Be open to new experiences and focus on learning from them. A degree in computing gives you a foundation but there will be new challenges in every job; always be thinking about what you can do to become more effective at your tasks.
Dr. Jimmie Lenz D.B.A.: A primary reason is the value placed on the quantitative nature of an engineering degree and the fact that this is primarily applied learning and skills, as opposed to the theoretical nature of some other areas of quantitative study. Being able to start working as soon as they start is very attractive to employers, as well as the broad knowledge of software, artificial intelligence, and data science that most engineers leave school with.
Oklahoma State University Institute of Technology - Okmulgee
Electromechanical Technologies/Technicians
Jim Gordon: Computer skills will only increase in importance and drone technology will be huge. Fluency in the software your firm uses will be a must-have skill.
Holger Findling: Most companies have a fixed range in salary for new hires. There is very limited space to negotiate a higher pay. It used to be a standard practice not to stay more than three years with a company because salary increases are associated with labor grade ranges. A larger salary increase can be realized by moving to a different company. Typically, 5% increase vs 3% salary increase. However, a programmer needs to continue studying in the field of interest. Earn a master's degree. Be the best you can be!
Holger Findling: Decide what technical area you would like to work in your field of expertise. Do you like to work for the aerospace industry? Decide what specific component you are interested in. Aircraft, Missiles, Energy, Navy - ships, Finance? The issue is that these components are developed in different states. For instance, in Florida Mid-Range missiles are developed and flight simulators. However, aircrafts are developed in Texas, Georgia, and Arizona, not in Florida. There are a lot of programmers needed for financial software. Most likely these jobs would be in New York, New Jersey, Atlanta, California and Massachusetts. In other words understand what industry you would like to work for, and understand that the industries are clustered in different states.
Holger Findling: Technologies are changing very fast, and you must change with it. Don't be rigid. AI is going to increase in the next five years, and the demand for programmers will be high. You would have to take courses studying AI concepts. Bio-Medical fields and Biometrics will be expanding in capabilities and these fields will need a lot of programmers. Take some additional courses, for example Biology and Chemistry.
Prof. Harold Evensen: This is a great time for Engineering Physics graduates. Besides the larger industry-wide need for engineers, products are becoming more integrated and include mechanical, electrical, and software components. Developing these products goes more smoothly if engineers have some working knowledge across several disciplines, plus an ability to adapt as needed. At UW-Platteville, Engineering Physics majors receive a broad base of applied physics, electrical, and mechanical engineering. Alumni and employers have told us that their adaptability is their most valuable asset.
Eastern Washington University
Computer Software And Media Applications
Dan Tappan: As much as possible, become a subject matter expert in the domain you're working in. The biggest problems we have are in not understanding the customer's problem and not understanding the customer's problem domain. Neither side is conversant in the other's world. We can't expect the customer to learn software development, so we have to learn about their world to bridge this gap.
Dan Tappan: This field changes so rapidly, it's hard to predict. Artificial intelligence has really taken off recently. There's no clear distinction between AI, machine learning, big data, and related areas anymore. They all blend together. These aren't just used as solutions to problems; they're also playing an ever-larger role in the tools we use to solve those problems. ChatGPT, for example, helps in writing documentation, and Google products help in writing code. Solid skills in these areas can streamline the development process.
Dan Tappan: There's not much room for salary negotiation as a new graduate with no experience. Every CS graduate shares roughly the same required background. What often distinguishes one applicant from another, or boosts the salary, is non-required experience with personal projects, contributions to open-source development, and so on. This shows not only applications of the required background, but also the initiative to learn and do more than is expected for the degree.
Northwestern University
Information Science/Studies
David Ostrowski: Create value in your position, become an expert in a few key areas to maximize value, concentrate on deep skill sets within a specific application domain, innovate and push the limits of technology.
David Ostrowski: Keep Learning. Some in the past have held the understanding that learning stops after college. While college gives you the foundation and insight, one needs to continually be learning throughout their career. Maintain an entrepreneurial mindset - even and especially if you plan on working for a large corporation (intrapreneur). Take a portion of your workweek to pursue new ideas and innovate. Maintain a portfolio of your work internally or externally. Love your work.
David Ostrowski: Deep technical software skills, incorporating and innovating with AI, programming languages like Golang, Solidity, Rust, JavaScript, understanding and appreciation of the functional programming paradigm. Innovation and pushing the limits of technology.