Explore jobs
Find specific jobs
Explore careers
Explore professions
Best companies
Explore companies
Data center engineer job growth summary. After extensive research, interviews, and analysis, Zippia's data science team found that:
The projected data center engineer job growth rate is 5% from 2018-2028.
About 18,200 new jobs for data center engineers are projected over the next decade.
Data center engineer salaries have increased 9% for data center engineers in the last 5 years.
There are over 15,786 data center engineers currently employed in the United States.
There are 178,277 active data center engineer job openings in the US.
The average data center engineer salary is $102,788.
| Year | # of jobs | % of population |
|---|---|---|
| 2021 | 15,786 | 0.00% |
| 2020 | 14,980 | 0.00% |
| 2019 | 13,359 | 0.00% |
| 2018 | 10,177 | 0.00% |
| 2017 | 10,458 | 0.00% |
| Year | Avg. salary | Hourly rate | % Change |
|---|---|---|---|
| 2025 | $102,788 | $49.42 | +3.4% |
| 2024 | $99,401 | $47.79 | +2.3% |
| 2023 | $97,151 | $46.71 | +1.2% |
| 2022 | $96,026 | $46.17 | +1.8% |
| 2021 | $94,368 | $45.37 | +2.4% |
| Rank | State | Population | # of jobs | Employment/ 1000ppl |
|---|---|---|---|---|
| 1 | District of Columbia | 693,972 | 883 | 127% |
| 2 | North Dakota | 755,393 | 458 | 61% |
| 3 | Virginia | 8,470,020 | 4,551 | 54% |
| 4 | Maryland | 6,052,177 | 3,078 | 51% |
| 5 | South Dakota | 869,666 | 436 | 50% |
| 6 | Montana | 1,050,493 | 511 | 49% |
| 7 | Nebraska | 1,920,076 | 901 | 47% |
| 8 | Massachusetts | 6,859,819 | 3,092 | 45% |
| 9 | Colorado | 5,607,154 | 2,237 | 40% |
| 10 | Minnesota | 5,576,606 | 2,081 | 37% |
| 11 | Oregon | 4,142,776 | 1,526 | 37% |
| 12 | Utah | 3,101,833 | 1,130 | 36% |
| 13 | New Hampshire | 1,342,795 | 489 | 36% |
| 14 | Alaska | 739,795 | 263 | 36% |
| 15 | Wyoming | 579,315 | 208 | 36% |
| 16 | Kansas | 2,913,123 | 987 | 34% |
| 17 | Illinois | 12,802,023 | 3,917 | 31% |
| 18 | New Mexico | 2,088,070 | 654 | 31% |
| 19 | Idaho | 1,716,943 | 532 | 31% |
| 20 | Rhode Island | 1,059,639 | 324 | 31% |
| Rank | City | # of jobs | Employment/ 1000ppl | Avg. salary |
|---|---|---|---|---|
| 1 | Dover | 5 | 13% | $100,529 |
| 2 | Juneau | 4 | 12% | $98,946 |
| 3 | Annapolis | 4 | 10% | $104,078 |
| 4 | Little Rock | 6 | 3% | $82,292 |
| 5 | Tallahassee | 5 | 3% | $90,489 |
| 6 | Hartford | 4 | 3% | $103,608 |
| 7 | Baton Rouge | 5 | 2% | $93,467 |
| 8 | Des Moines | 5 | 2% | $84,810 |
| 9 | Washington | 9 | 1% | $83,758 |
| 10 | Atlanta | 6 | 1% | $90,253 |
| 11 | Indianapolis | 6 | 1% | $93,553 |
| 12 | Boston | 5 | 1% | $105,605 |
| 13 | Sacramento | 5 | 1% | $135,544 |
| 14 | Urban Honolulu | 5 | 1% | $113,979 |
| 15 | Denver | 4 | 1% | $73,420 |
| 16 | Phoenix | 5 | 0% | $96,976 |
| 17 | Chicago | 4 | 0% | $87,987 |
Seattle University
University of South Alabama
University of Minnesota - Duluth
New Jersey Institute of Technology
Weber State University
Southern Illinois University Edwardsville
Bellingham Technical College
California State University - East Bay
University of South Alabama
North Carolina State University
Stevens Institute of Technology
Massachusetts Maritime Academy
Worcester Polytechnic Institute
Northwood University
Kambiz Farahmand Ph.D., P.E.: After you proved yourself to your peers and supervisors, you can always ask your price. Otherwise, there are a lot of other companies that will meet your ask and value your abilities.
Kambiz Farahmand Ph.D., P.E.: All engineering and technical skills will be in need. People who are capable to use technology will be in high demand. Project management skills. Ability to use various software and be able to do some coding. Understanding of AI and how it applies to the specific work that you do.
Julie Brandis: Oregon State University provides support in salary negotiation, also students can work with mentors who are familiar with company hiring practices and wage structures. If you have internship experience, that can help to boost your starting salary.
Christopher Misorski FASM: Maximizing salary potential at the start of your career is not a clear pathway generally. One way that you can be considered more valuable, and hence worth a better salary, is to have participated in a co-op or internship program with a company in your field. This experience gives employers some confidence that you were able to carry out assignments and thrive in a workplace environment. The employer that you worked for may be inclined to offer you a position upon graduation and you are now worth more because you have already proven to them your abilities. Even if they don’t offer you a job (no appropriate open position may be available) your ability to discuss your experiences with the HR recruiter or hiring manager at another company can instill confidence in your selection as a hire. Just remember, if you tell them you did a project, be prepared to explain it so it doesn’t appear you were just in the background of this project, just going along for the ride.
Thomas Congedo PhD: That comes from your ability to focus on technical product of the highest quality, always seeking to truly understand the customer’s needs. For example, often a customer will phrase a problem by stating the solution he or she assumes. Taking the time to respectfully draw out the thinking further can make you the customer’s hero, and this makes you the person likely to be selected for the challenging and most rewarded assignments.
Seattle University
Civil Engineering
Jhon Smith: Do not be afraid to ask questions to your supervisors (although do not take it to an extreme and become demanding—show initiative). You get the fundamentals of engineering at school and you are equipped to use them but it takes a few years to feel comfortable. Engineering is a profession of practice and it is only through practice that you best learn it.
Jhon Smith: Expand your network, join professional organizations and committees, become valuable in whatever company you work for, never stop learning, seek for opportunities for professional work, get your PE license. After these you will become more valuable naturally and could comfortably ask for a promotion or a salary increase because you’d know you deserve it.
Jhon Smith: Professional skills such as being able to communicate clearly, being flexible, open-minded, eager to take on challenges, adept and working with others and taking ownership of the projects tasks given to you. Staying grounded to the fundamental concepts you learn in school so every time you run a sophisticated piece of software to do design you must be able to use those fundamentals to check the results.
Sean Walker: Model Based Systems Engineering (MBSE) and Artificial Intelligence (AI) are going to be incredibly important in Systems Engineering over the next 3-5 years. MBSE has already become quintessential to the practice of Systems Engineering, which is why it has become a staple of our Master's and Doctoral programs. AI, of course, is changing almost every technical field and will be important to Systems Engineers as well. For Systems Engineers, the challenge will be understanding how and when to apply AI to solve systemic problems. Of course, both of these elements must be applied with an understanding of sociotechnical systems concerns. An engineer with the skills to apply MBSE and AI without losing sight of the humans in the system will be highly sought after.
Sean Walker: To maximize your salary, it is really essential to learn the tools and methods associated with Systems Engineering while also maintaining a sense of creativity. Employers are not only looking for engineers with the ability to apply specific tools but also the ability to think creatively to solve complex systems problems. I often encourage my students to maintain their creative hobbies so that they don't lose those skills. But, more immediately, gaining a graduate education in Systems Engineering can help any engineer increase their earning potential.
Sean Walker: I think the best advice for a new Systems Engineer, or really any engineer, is to be observant. One of the best things you can do when starting to apply the theoretical aspects that you've learned in school to your new career is to watch and listen to how experienced Systems Engineers practice in the field. This doesn't mean that you can't offer ideas or perspectives that are new, but that there will be challenges in your field that - due to the breadth of Systems Engineering - may not have been covered in your education.
Richard Davis: Engineering offers career opportunities across various industries, from technology and healthcare to infrastructure and environmental sustainability. With technological advancements and the increasing complexity of global challenges, such as climate change, food and clean water, and urbanization, engineers are in high demand to develop innovative solutions. For example, environmental engineers are crucial in developing sustainable solutions to reduce pollution and conserve resources. Engineering provides opportunities for creativity and problem-solving, making it a rewarding career choice for those who enjoy tackling complex problems. The global focus on sustainability and renewable energy presents exciting prospects for engineers to contribute to meaningful projects that positively impact society and the environment.
Mishah Salman Ph.D.: An underappreciated skill that I think will become more sought-after is the ability to validate computer-made decisions and their shortcomings. With the growing prominence of AI use in design, problem solving, and decision making, the engineering field will need experts to error-check decisions made using these technologies. Sometimes there are unexplored gaps that these technologies overlook, and sometimes there are biases or inappropriate assumptions baked into AI-based results. Humans are inherently imaginative and creative. We excel at picking up on things that computer algorithms may miss. Talented experts that recognize and address these issues will remain invaluable in the workforce. Another indispensable skill that is often overlooked in engineering is effective interpersonal communication. Whether in a teamwork context, a leadership role, or a client interaction, competent communication is crucial. This can take the form of conversation, live presentations, written correspondence, and beyond. People that hone their communication skills are often recognized, and tend to be the individuals that are promoted to more senior roles.
Mishah Salman Ph.D.: To maximize salary potential, I recommend growing your professional network and being flexible within your career. Attending professional gatherings and rubbing shoulders goes a very long way. It’s amazing how you can casually bump into some well-respected team leader that’s trying to fill an opening or glean information about a new project that needs fresh talent. Network with people in diverse fields and roles. You never know who knows who. Making a positive impression and having someone recognize your name down the line can go a very long way!
Mansooreh Mollaghasemi Ph.D.: Concurrent with building technical skills, they must build soft skills such as communication, teamwork, problem-solving, and leadership. These skills are often the differentiators between good and great engineers.
Megumi Usui: Even after obtaining a degree, it is crucial to recognize that continuous learning is a fundamental aspect of professional development in the workplace. One must cultivate an open-minded attitude and demonstrate a willingness to acquire new knowledge and skills at any time and in any context. Effective communication with colleagues and clients is essential for successful collaboration and project execution. It is important to understand that the professional environment is significantly different from the academic setting. In a company, the focus is delivering work that meets the expectations and standards set by the employer and satisfies the needs of clients, rather than merely fulfilling personal criteria. Furthermore, it is imperative to produce high-quality work consistently. Mediocre performance is unacceptable, and organizations will not hesitate to seek replacements if the work delivered does not meet their standards. Ensuring that your work is thorough, precise, and aligns with the company's objectives is critical for maintaining the position and advancing their career.
Michael Denn: 1. Become the expert in whatever you do. 2. Understand how your work fits into the bigger picture and keep that in mind when you do your work. 3. Keep learning! Your engineering degree is not the end of your education! 4. Take stretch assignments and opportunities whenever you can.
Michael Denn: 1. The time needed to progress from an idea to a quality prototype is continually decreasing. That trend will likely continue. Skills that support short development times, such as computer modeling, simulations and rapid prototyping, will continue to be valued. 2. One skill that will always be valuable is the ability to acquire new knowledge and apply it to the task at hand.
Michael Denn: The answers to this question are largely the same as the answer to question 1. However, here are some additional points: 1. Excel in your job. Become the person everyone goes to for whatever type of work you do. 2. Develop and maintain a career plan. Make sure your assignments and tasks align with your plan. When you have the opportunity to change positions, keep you plan in mind.
Bellingham Technical College
Precision Metal Working
Kyle Miller: The advice I feel the most compelled to offer, based on personal experience, is to embrace the first few years in the field as a nebulous growth period. There is often a rush for graduates to 'realize their identity' in the field, at the risk of narrowing their potential in the trades. The first year or two is a great time to shake every hand and make every acquaintance possible. A lot of those interactions can help guide a trades-person along a pathway they didn't realize was possible upon their first steps into the working world.
California State University - East Bay
Computer Systems Networking And Telecommunications
Dr. Bobby Roohparvar Ph.D.: *The anxiety of AI is likely to change the landscape of computer networking, is a real threat but in my opinion, it won't eliminate the need for human network engineers. The focus will likely shift towards more strategic tasks, complex problem-solving, and leveraging AI tools to improve network efficiency and security.*
*Here again, I will explain in more detail about the expectation and future of Comp. Network Eng.*
* 1. AI Augments, Not Replaces: While AI can automate some network tasks, like data analysis and basic troubleshooting, it won't replace the need for human network engineers. It will increase the productivity for sure; Complex problem-solving, strategic decision-making, and human judgment are still crucial in network management. AI will likely become a valuable tool that assists network engineers in their tasks, making them more efficient.*
*2. Growing Demand: Our reliance on technology and data is constantly increasing. Businesses and organizations need secure, reliable networks to function. This necessitates a skilled workforce to design, implement, maintain, and secure these networks. The demand for qualified network engineers is expected to grow in the coming years.*
*In our technology horizon, I can see the quantum internet coming and I can see the demand for network engineering accelerate.*
*3. Diverse Skillset: A strong foundation in computer networking equips you with a versatile skillset. You'll understand network protocols, security concepts, and troubleshooting methodologies. These skills are valuable across the IT field and can be applied to areas like cloud computing, data center operations, or even cybersecurity. Data Centers for AI are becoming a huge opportunity for Comp Network Eng.*
Dr. Bobby Roohparvar Ph.D.: *Favor:*
*Variety: Each day presents new challenges and opportunities for problem-solving.*
*Demand: The field offers strong job growth and stability.*
*Impact: Your work ensures businesses and organizations remain connected and operational.*
*Learning: There's always something new to learn with emerging technologies.*
*Dislike:*
*Troubleshooting: Issues can be complex and take a lot of time to resolve.*
*On-call: Network problems can occur at any time, requiring on-call availability.*
*Pressure: Maintaining network uptime can be stressful, especially during critical periods.*
*Keeping Up-to-Date: Rapid technological changes necessitate continuous learning.*
Dr. Bobby Roohparvar Ph.D.: *Computer Networking Engineers are crucial in designing, building, maintaining, and troubleshooting complex networks. They need strong technical skills, analytical abilities, and strategic thinking to ensure smooth network operations.*
*A bit more detailed explanation of the Computer Networking Engineers responsibility:*
*Designing and Implementing Networks: This essential task involves creating new networks or significantly upgrading existing ones. It includes understanding organizational requirements, planning capacity, selecting the right hardware and software, and configuring these components for optimal performance and security.*
*Network Automation: Engineers automate routine tasks using scripting languages like Python or tools such as Cisco automation software. This automation not only saves time but also ensures consistent configurations.*
*Troubleshooting Complex Issues: They tackle intricate network problems by analyzing traffic patterns, identifying bottlenecks, optimizing performance, and resolving complex connectivity or security issues.*
*Staying Updated with Technology: As the networking field evolves rapidly, engineers must keep up with new technologies, emerging security threats, and best practices through conferences, online forums, and continuous learning.*
University of South Alabama
Electrical, Electronics, And Communications Engineering
Edmund Spencer: Look for jobs that have the highest technical content, and try to develop entrepreneurial skills early.
Daniel Armentrout: The excessive number of baby boomer engineers are retiring at high rates and you as a new engineering graduate are desperately needed to make up for their loss in the workforce. You will face challenges in your career we could not anticipate or prepare you for in your education. You will have to adapt and continue to learn new fields of study which did not exist when you graduated. We have given you tools to learn and you will have to use those tools to remain relevant throughout your career. Find your place as an engineer when you can be effective, help humanity, and have fun. Plot a career path where you can utilize your strengths and challenge your mind to do new things. Contribute to making a better world and you will be able to enjoy immense satisfaction and a sense of accomplishment.
Daniel Armentrout: Expanded use of swarms of cheap sensors that communicate on multiple platforms for better understanding and control of complicated systems. Integrated use of artificial intelligence to increase our effectiveness in all aspects of our jobs.
Alexey Gulyuk: This varies whether the engineer joins Industry or decides to stay at Academia. However, on a daily basis engineers engage in research and development activities, develop problem-solving strategies involving crisis management, perform enormous amounts of scientific reading and writing, as well as collaborate and exchange ideas with colleagues, clients, or various multidisciplinary teams. Writing part typically requires rigorous documentation of all the steps taken during the experiments, troubleshooting steps, interpretation of results, development of new protocols and approaches. The biggest part of being an engineer, in my opinion, is to be a perfectionist, stay on top of things and continuously learn. The world around us changes rapidly and we should keep up with its pace.
Anthony Barrese: Pursue opportunities to broaden your experience across systems engineering, development, integration and test, field sales support and professional services positions. Generalist experience becomes invaluable with career advancement. Running a team is much more feasible for leaders who understand the process behind the work their reports deliver.
Anthony Barrese: There are many paths leading to increased salary potential. Rapidly developing a deep understanding of customer environments and needs can be one of those, but is often not sufficient on its own. Cultivating strong communication skills, building relationships across the business and distinguishing yourself as a leader will all position you for career advancement and the compensation increases that go along with that.
Anthony Barrese: The ability to listen to the customer is the most critical skill. Deeply understanding the needs of the end user ensures business success. In addition, digital engineering environments and digital twin technology in particular, will become increasingly important. These tools enable gains in efficiency and promote enhanced quality.
Mark Whalen P.E.: A system engineer designs, develops, and manages complex technical systems across a large variety of industries. This can include defining solutions to system-level problems, plus allocating requirements, technologies and team member tasking at a project level, as well as communicating complex ideas and systems to key stakeholders.
An entry-level system engineer will typically apply advanced mathematical techniques to solve system-level technical problems, as well as installing, testing, and troubleshooting complex operating systems
Mark Whalen P.E.: Many system engineers enjoy working across all technologies at a higher organizational level, and interacting with all types of technologists to manage and implement complex technical systems.
Many system engineers can feel challenged by their lack of depth of understanding of particular technologies compared to technical specialists.
Mark Whalen P.E.: There are many complex systems in existence or being developed that require knowledge and experience across many different technologies. Also, system engineering careers can often lead to managerial positions like becoming a project manager, operations manager or chief engineer.
Don Gelosh Ph.D.: Systems Engineering is a contact sport. As a systems engineer you are expected to be a leader.
Successful systems engineers are those who get out of their office and engage with other
engineers and technicians who work on complex systems. On any given day, systems engineers
could be working on a team, possibly leading that team, in one of the several phases of the
design and development effort. They may be working with stakeholders to determine their
requirements for the complex system or they may be working with validation test engineers to
determine if the complex system will satisfy the stakeholders needs.
While it would be expected that you are very knowledgeable in a few discipline areas, such as
electrical, mechanical or chemical engineering, you are not expected to be an expert in all
areas. However, you would be expected to know the experts in those fields and others and
how they should be involved in the overall development process. You would be expected to
understand the many processes of systems engineering and how each process contributes to
the success of the complex system.
You would also be expected to thoroughly understand any other systems and the operational
environment that will interface and interact with your system. As a systems engineer, you
would be expected to understand the big picture of the complex system.
Don Gelosh Ph.D.: Being a systems engineer provides you with many opportunities to learn and grow. Systems engineers
have the opportunity to learn all they can about a specific engineering discipline field of choice (i.e.,
electrical, mechanical, chemical, power, etc.). Systems engineers are also expected to learn in general
what engineers and technicians in other disciplines do on a daily basis. Systems engineers should talk to
other systems engineers about their daily activities as much as possible. Systems engineers should learn
how to lead people and manage resources; they should learn how to both lead and serve on teams.
Systems engineers should prepare themselves through education, training, and experience for
opportunities to grow and take on new responsibilities.
One dislike may be the long hours in dealing with the challenges of developing complex systems.
However, if you enjoy this type of work, the rewards of leading and managing the creation of successful
systems will be worth the effort it takes.
Don Gelosh Ph.D.: There is a great demand for those who can understand the big picture as well as knowing the
smallest detail in the development and delivery of complex systems. It is very important that
everyone involved in the engineering of complex systems works from the same requirements
and understands the intended operational environment. Systems engineers facilitate this
common understanding of the target system, interconnected systems and the operational
environment.
Today's advanced technology and systems that utilize that technology are increasingly
becoming more complex and more challenging to develop and deliver. This requires a different
type of engineer, one who has both in-depth technical knowledge and leadership skills.
Systems engineers who understand these requirements and can deliver successful complex
systems will always be in demand.
Northwood University
Computer And Information Sciences
Professor David Sanford: Workers like that they are challenged to solve problems and lead technological innovations.
They appreciate the diversity of projects
They enjoy the need for continuous improvement and education
Many see the global impact of their work.
They also desire and appreciate the need for versatile skills
A competitive salary is also an item that employees like
Workers dislike that the work can be stressful
Dealing with tight deadlines and/ or cybersecurity concerns.
This is a positive and a negative: The need to constantly stay up to date with technology can be a bit overwhelming for some.
There may be times of isolation, and
The unexpected system failures can be frustrating as they often require extra hours or the need to be on-call.
The multiple responsibilities and managing repetitive tasks are also issues workers point out in this field.
In short, the workplace offers exciting opportunities but comes with its fair share of pressures and challenges. Different people have different experiences based on their roles and personal preferences.
Professor David Sanford: Going into information systems engineering is a smart choice for many reasons. The profession is in high demand worldwide, offering job security and competitive wages. Professionals in this field have versatile skills, allowing them to work with sophisticated technology and adapt to changing business needs. Continued technological advancement creates opportunities for innovation and problem-solving. Career paths cater to individual interests, including knowledge in areas such as cybersecurity and data analytics. In addition, the possibility of working remotely enhances the flexibility of work, making it attractive to those seeking a dynamic and stimulating career